Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7688, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001061

RESUMEN

Fe-containing transition-metal (oxy)hydroxides are highly active oxygen-evolution reaction (OER) electrocatalysts in alkaline media and ubiquitously form across many materials systems. The complexity and dynamics of the Fe sites within the (oxy)hydroxide have slowed understanding of how and where the Fe-based active sites form-information critical for designing catalysts and electrolytes with higher activity and stability. We show that where/how Fe species in the electrolyte incorporate into host Ni or Co (oxy)hydroxides depends on the electrochemical history and structural properties of the host material. Substantially less Fe is incorporated from Fe-spiked electrolyte into Ni (oxy)hydroxide at anodic potentials, past the nominally Ni2+/3+ redox wave, compared to during potential cycling. The Fe adsorbed under constant anodic potentials leads to impressively high per-Fe OER turn-over frequency (TOFFe) of ~40 s-1 at 350 mV overpotential which we attribute to under-coordinated "surface" Fe. By systematically controlling the concentration of surface Fe, we find TOFFe increases linearly with the Fe concentration. This suggests a changing OER mechanism with increased Fe concentration, consistent with a mechanism involving cooperative Fe sites in FeOx clusters.

3.
Langmuir ; 36(16): 4454-4464, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32281378

RESUMEN

The synthesis of some complex polyoxometalates (POMs) is critical to develop potential photocatalysts with high catalytic activity and selectivity. Here, we address this challenge by a hydrothermal self-assembly route to obtain a novel POM-based Co4W6O21(OH)2·4H2O with a hierarchical microsphere structure. The Co4W6O21(OH)2·4H2O crystallizes in the cubic space group Im3̅ with cell parameters: a = b = c = 12.878 Å, α = ß = γ = 90°, and Z = 4. The structure is further characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectra. After depositing Ag2O nanoparticles on the 3D Co4W6O21(OH)2·4H2O microsphere by photochemical synthesis, the Co4W6O21(OH)2·4H2O/Ag2O heterojunction presents enhanced photocatalytic activity for RhB compared with P25 and pristine Ag2O. Moreover, we confirm the key role of holes for the Co4W6O21(OH)2·4H2O/Ag2O and put forward a possible mechanism for the photocatalytic degradation reaction.

4.
Front Chem ; 8: 189, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318539

RESUMEN

Layered NbS2, a member of group-V transition metal dichalcogenides, was synthesized via a colloidal synthesis method and employed as a negative material for a supercapacitor. The morphologies of NbS2 can be tuned from ultrathin nanosheets to hierarchical structures through dynamics controls based on growth mechanisms. Electrochemical energy storage measurements present that the ultrathin NbS2 electrode exhibits the highest rate capability due to having the largest electrochemical surface area and its efficient ion diffusion. Meanwhile, the hierarchical NbS2 shows the highest specific capacitance at low current densities for small charge transfer resistance, displays 221.4 F g-1 at 1 A g-1 and 117.1 F g-1 at 10 A g-1, and cycling stability with 78.9% of the initial specific capacitance after 10,000 cycles. The aggregate or stacking of nanosheets can be suppressed effectively by constructing hierarchical structure NbS2 nanosheets.

5.
Nanoscale ; 11(48): 23296-23303, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31782483

RESUMEN

The development of efficient and stable non-noble-metal electrocatalytic materials for the oxygen evolution reaction (OER) is a huge and important challenge at present. Herein, we report the prominent enhancement of OER activity via doping vanadium into CoFe-based layered double hydroxide (LDH) electrocatalysts. Electrochemical characterization shows that the Co2Fe0.5V0.5 LDH grown on carbon papers (CPs) has an enormous electrochemical surface area (ECSA) and exhibits the smallest overpotential of 242 mV at 10 mA cm-2, which only requires a small Tafel slope of 41.4 mV dec-1 in 1 M KOH solution. The X-ray photoelectron spectroscopy (XPS) peak position of Co, Fe and O moves slightly to higher binding energy, elucidating the improved covalency of the metal-oxygen bond after V doping. DFT+U simulation indicates that the outstanding electrocatalytic activity of Co2Fe0.5V0.5 could be ascribed to the increased metal-oxygen covalency in LDH after V element doping, and facilitates the charge-transfer from oxygen to the metal. This finely tuned strategy by V doping into the CoFe-based LDH matrix can adjust the covalency of metal-oxygen bridges and enhance its electrocatalytic activity for the OER. In this work, we also present a general method to study various highly efficient metal hydroxide catalysts for the OER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA