Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 236: 123976, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906212

RESUMEN

As an economical and environment-friendly material, hydrothermal carbonation carbon (HTCC) has been widely used in the field of adsorption and catalysis. Previous studies mainly used glucose as raw material to prepare HTCC. Cellulose in biomass can be further hydrolyzed into carbohydrate; however, there are few reports on the direct preparation of HTCC from biomass and the relevant synthesis mechanism is unclear. In this study, HTCC with efficient photocatalytic performance was prepared from reed straw using dilute acid etching under hydrothermal conditions and was used for the degradation of tetracycline (TC). The mechanism of photodegradation of TC by HTCC was systematically elucidated through various characterization techniques and density functional theory (DFT) calculations. This study provides a new perspective on the preparation of green photocatalysts and demonstrates their promising application in environmental remediation.


Asunto(s)
Antibacterianos , Celulosa , Carbono , Tetraciclina , Carbohidratos , Catálisis , Luz
2.
Environ Sci Pollut Res Int ; 30(16): 48048-48061, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36746863

RESUMEN

Hydrothermal carbonation carbon (HTCC) is a promising semiconductor material for the photocatalytic degradation of pollutants. However, the poor charge transfer capability of HTCC and the unclear mechanism of photocatalysis limit its practical application. In this study, a novel Z-type heterojunction photocatalyst of silver carbonate (Ag2CO3) and HTCC (Ag2CO3/HTCC) was developed for the degradation of methylene blue (MB) and tetracycline (TC) from wastewater using a hydrothermal- coprecipitation method. Compared to Ag2CO3 and HTCC, 40% Ag2CO3/HTCC had excellent photocatalytic activity and stability. The free radical scavenger experiments showed that •O2- and h+ were the main substances for the degradation of MB and TC. The intermediates formed during the photodegradation were identified by HPLC-MS, and a possible mechanism and pathway for the degradation of MB and TC by Ag2CO3/HTCC was proposed. This study provides a new idea for the synthesis of Z-type HTCC heterojunction with a high-photocatalytic efficiency and its photocatalytic mechanism.


Asunto(s)
Carbono , Azul de Metileno , Tetraciclina , Antibacterianos , Fotólisis , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA