RESUMEN
MAIN CONCLUSION: Despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and diverge partially in stress signaling functions. The PAM2 motif represents a binding site for poly (A)-binding proteins (PABPs), often associated with RNA metabolism regulation. The PAM2-containing protein ERD15 stands out as a critical regulator of diverse stress responses in plants. Despite the relevance of the PAM2 motif, a comprehensive analysis of the PAM2 superfamily and ERD15-like subfamily in the plant kingdom is lacking. Here, we provide an extensive in silico analysis of the PAM2 superfamily and the ERD15-like subfamily in soybean, using Arabidopsis and rice sequences as prototypes. The Glycine max ERD15-like subfamily members were clustered in pairs, likely originating from DNA-based gene duplication, as the paralogs display high sequence conservation, similar exon/intron genome organization, and are undergoing purifying selection. Complementation analyses of an aterd15 mutant demonstrated that the plant ERD15-like subfamily members are functionally redundant in response to drought, osmotic stress, and dark-induced senescence. Nevertheless, the soybean members displayed differential expression profiles, biochemical activity, and subcellular localization, consistent with functional diversification. The expression profiles of Glyma04G138600 under salicylic acid (SA) and abscisic acid (ABA) treatments differed oppositely from those of the other GmERD15-like genes. Abiotic stress-induced coexpression analysis with soybean PABPs showed that Glyma04G138600 was clustered separately from other GmERD15s. In contrast to the AtERD15 stress-induced nuclear redistribution, Glyma04G138600 and Glyma02G260800 localized to the cytoplasm, while Glyma03G131900 fractionated between the cytoplasm and nucleus under normal and stress conditions. These data collectively indicate that despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and may diverge partially in stress signaling functions.
Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Glycine max , Proteínas de Plantas , Estrés Fisiológico , Glycine max/genética , Glycine max/fisiología , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Arabidopsis/genética , Sequías , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Filogenia , Familia de MultigenesRESUMEN
The endoplasmic reticulum (ER) stress response is triggered by any condition that disrupts protein folding and promotes the accumulation of unfolded proteins in the lumen of the organelle. In eukaryotic cells, the evolutionarily conserved unfolded protein response is activated to clear unfolded proteins and restore ER homeostasis. The recovery from ER stress is accomplished by decreasing protein translation and loading into the organelle, increasing the ER protein processing capacity and ER-associated protein degradation activity. However, if the ER stress persists and cannot be reversed, the chronically prolonged stress leads to cellular dysfunction that activates cell death signaling as an ultimate attempt to survive. Accumulating evidence implicates ER stress-induced cell death signaling pathways as significant contributors for stress adaptation in plants, making modulators of ER stress pathways potentially attractive targets for stress tolerance engineering. Here, we summarize recent advances in understanding plant-specific molecular mechanisms that elicit cell death signaling from ER stress. We also highlight the conserved features of ER stress-induced cell death signaling in plants shared by eukaryotic cells.
RESUMEN
Glycine max NAC81 (GmNAC81) is a downstream effector of the DCD/NRP-mediated cell death signaling, which interacts with GmNAC30 to fully induce the caspase 1-like vacuolar processing enzyme (VPE) expression, the executioner of the cell death program. GmNAC81 has been previously shown to positively modulate leaf senescence via the NRP/GmNAC81/VPE signaling module. Here, we examined the transcriptome induced by GmNAC81 overexpression and leaf senescence and showed that GmNAC81 further modulates leaf senescence by regulating an extensive repertoire of functionally characterized senescence-associated genes (SAGs). Because the NRP/GmNAC81/VPE signaling circuit also relays stress-induced cell death signals, we examined the effect of GmNAC81 overexpression in drought responses. Enhanced GmNAC81 expression in the transgenic lines increased sensitivity to water deprivation. Under progressive drought, the GmNAC81-overexpressing lines displayed severe leaf wilting, a larger and faster decline in leaf Ψw, relative water content (RWC), photosynthesis rate, stomatal conductance, and transpiration rate, in addition to higher Ci/Ca and lower Fm/Fv ratios compared to the BR16 control line. Collectively, these results indicate that the photosynthetic activity and apparatus were more affected by drought in the transgenic lines. Consistent with hypersensitivity to drought, chlorophyll loss, and lipid peroxidation were higher in the GmNAC81-overexpressing lines than in BR16 under dehydration. In addition to inducing VPE expression, GmNAC81 overexpression uncovered the regulation of typical drought-responsive genes. In particular, key regulators and effectors of ABA signaling were suppressed by GmNAC81 overexpression. These results suggest that GmNAC81 may negatively control drought tolerance not only via VPE activation but also via suppression of ABA signaling.
RESUMEN
The NAC (NAM, ATAF, and CUC) genes encode transcription factors involved with the control of plant morph-physiology and stress responses. The release of the last soybean (Glycine max) genome assembly (Wm82.a2.v1) raised the possibility that new NAC genes would be present in the soybean genome. Here, we interrogated the last version of the soybean genome against a conserved NAC domain structure. Our analysis identified 32 putative novel NAC genes, updating the superfamily to 180 gene members. We also organized the genes in 15 phylogenetic subfamilies, which showed a perfect correlation among sequence conservation, expression profile, and function of orthologous Arabidopsis thaliana genes and NAC soybean genes. To validate our in silico analyses, we monitored the stress-mediated gene expression profiles of eight new NAC-genes by qRT-PCR and monitored the GmNAC senescence-associated genes by RNA-seq. Among ER stress, osmotic stress and salicylic acid treatment, all the novel tested GmNAC genes responded to at least one type of stress, displaying a complex expression profile under different kinetics and extension of the response. Furthermore, we showed that 40% of the GmNACs were differentially regulated by natural leaf senescence, including eight (8) newly identified GmNACs. The developmental and stress-responsive expression profiles of the novel NAC genes fitted perfectly with their phylogenetic subfamily. Finally, we examined two uncharacterized senescence-associated proteins, GmNAC065 and GmNAC085, and a novel, previously unidentified, NAC protein, GmNAC177, and showed that they are nuclear localized, and except for GmNAC065, they display transactivation activity in yeast. Consistent with a role in leaf senescence, transient expression of GmNAC065 and GmNAC085 induces the appearance of hallmarks of leaf senescence, including chlorophyll loss, leaf yellowing, lipid peroxidation and accumulation of H2O2. GmNAC177 was clustered to an uncharacterized subfamily but in close proximity to the TIP subfamily. Accordingly, it was rapidly induced by ER stress and by salicylic acid under late kinetic response and promoted cell death in planta. Collectively, our data further substantiated the notion that the GmNAC genes display functional and expression profiles consistent with their phylogenetic relatedness and established a complete framework of the soybean NAC superfamily as a foundation for future analyses.
RESUMEN
RATIONALE: The Amazon River is a huge network of long tributaries, and little is known about the headwaters. Here we present a study of one wet tropical Amazon forest side, and one dry and cold Atiplano plateau, originating from the same cordillera. The aim is to see how this difference affects the water characteristics. METHODS: Different kind of water (spring, lake, river, rainfall) were sampled to determine their stable isotopes ratios (oxygen 18/16 and hydrogen 2/1) by continuous flow isotope ratio mass spectrometry (IRMS). These ratios coupled with chemical analysis enabled us to determine the origin of the water, the evaporation process and the water recycling over the Amazon plain forest and montane cloud forest. RESULTS: Our study shows that the water flowing in the upper Madre de Dios basin comes mainly from the foothill humid forest, with a characteristic water recycling process signature, and not from higher glacier melt. On the contrary, the water flowing in the Altiplano Rivers is mainly from glacier melts, with a high evaporation process. This snow and glacier are fed mainly by Atlantic moisture which transits over the large Amazon forest. CONCLUSIONS: The Atlantic moisture and its recycling over this huge tropical forest display a progressive isotopic gradient, as a function of distance from the ocean. At the level of the montane cloud forest and on the altiplano, respectively, additional water recycling and evaporation occur, but they are insignificant in the total water discharge.
Asunto(s)
Isótopos/análisis , Ríos/química , Altitud , Ambiente , Iones/análisis , Espectrometría de Masas , Perú , Ciclo Hidrológico , Movimientos del Agua , Tiempo (Meteorología)RESUMEN
Optimizing and monitoring the data flow in high-throughput sequencing facilities is important for data input and output, for tracking the status of results for the users of the facility, and to guarantee a good, high-quality service. In a multi-user system environment with different throughputs, each user wants to access his/her data easily, track his/her sequencing history, analyze sequences and their quality, and apply some basic post-sequencing analysis, without the necessity of installing further software. Recently, Fiocruz established such a core facility as a "technological platform". Infrastructure includes a 48-capillary 3730 DNA Sequence Analyzer (Applied Biosystems) and supporting equipment. The service includes running samples for large-scale users, performing DNA sequencing reactions and runs for medium and small users, and participation in partial or full genome projects. We implemented a workflow that fulfills these requirements for small and high throughput users. Our implementation also includes the monitoring of data for continuous quality improvement (reports by plate, month and user) by the sequencing staff. For the user, different analyses of the chromatograms, such as visualization of good quality regions, as well as processing, such as comparisons or assemblies, are available. So far, 180 users have made use of the service, generating 155,000 sequences, 35% of which were produced for the BCG Moreau-RJ genome project. The pipeline (named ChromaPipe for Chromatogram Pipeline) is available for download by the scientific community at the url http://bioinfo.pdtis.fiocruz.br/ChromaPipe/. The support for assembly is also configured as a web service: http://bioinfo.pdtis.fiocruz.br/Assembly/.
Asunto(s)
Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Control de Calidad , Reproducibilidad de los ResultadosRESUMEN
Trypanosoma cruzi is the epidemiological agent of Chagas' disease, affecting most of Central and South America, constituting a significant health and socio-economic problem. The parasite has a metabolism largely based on the consumption of amino acids, which participate in a diversity of metabolic pathways, leading to many crucial compounds for the survival of this parasite. Study of its enzymes has the potential to disclose new therapeutic targets and foster the development of new drugs. In this study, we employed computational approaches to reconstruct in silico the amino acid metabolic pathways of T. cruzi, aiming to link genomic information with functional information. For that, protein sequences from 570 EC classes belonging to 25 different pathways in general amino acid metabolism were downloaded from KEGG. A subset of 471 EC classes had at least one sequence deposited. Clustering of the proteins belonging to each EC class was performed using a similarity-based approach implemented in the tool AnEnPi. Reconstruction of the metabolic pathways comprising the amino acid metabolism of T. cruzi was performed by analyzing the output of BLASTP, using as query the dataset of predicted proteins of T. cruzi against all sequences of each individual cluster. This approach allowed us to identify 764 T. cruzi proteins probably involved in the metabolism of amino acids as well as the identification of several putative cases of analogy. Furthermore, we were able to identify several enzymatic activities of T. cruzi that were not previously included in KEGG.