Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(4): 5937-5952, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209545

RESUMEN

The complete understanding of the formation of seemingly levitating droplets on liquid-repelling surfaces provides the basis for further development of applications requiring friction-free liquid transport. For the investigation of these droplets and, thereby, the underlying surface properties, standard techniques typically only reveal a fraction of droplet or surface information. Here, we propose to exploit the light-shaping features of liquid droplets when interpreted as thick biconvex elliptical lenses. This approach has the potential to decode a plethora of droplet information from a passing laser beam, by transforming the information into a structured light field. Here, we explore this potential by analyzing the three-dimensional intensity structures sculpted by the droplet lenses, revealing the transfer of the characteristics of the underlying liquid-repelling effect onto the light field. As illustrative complementary examples, we study droplet lenses formed on a non-wetting Taro (Colocasia esculenta) leaf surface and by the Leidenfrost effect on a heated plate. Our approach may reveal even typically "invisible" droplet properties as the refractive index or internal flow dynamics and, hence, will be of interest to augment conventional tools for droplet and surface investigation.

2.
Nat Commun ; 12(1): 6785, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811373

RESUMEN

Three-dimensional (3D) topological states resemble truly localised, particle-like objects in physical space. Among the richest such structures are 3D skyrmions and hopfions, that realise integer topological numbers in their configuration via homotopic mappings from real space to the hypersphere (sphere in 4D space) or the 2D sphere. They have received tremendous attention as exotic textures in particle physics, cosmology, superfluids, and many other systems. Here we experimentally create and measure a topological 3D skyrmionic hopfion in fully structured light. By simultaneously tailoring the polarisation and phase profile, our beam establishes the skyrmionic mapping by realising every possible optical state in the propagation volume. The resulting light field's Stokes parameters and phase are synthesised into a Hopf fibration texture. We perform volumetric full-field reconstruction of the [Formula: see text] mapping, measuring a quantised topological charge, or Skyrme number, of 0.945. Such topological state control opens avenues for 3D optical data encoding and metrology. The Hopf characterisation of the optical hypersphere endows a fresh perspective to topological optics, offering experimentally-accessible photonic analogues to the gamut of particle-like 3D topological textures, from condensed matter to high-energy physics.

3.
Sci Rep ; 11(1): 18019, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504187

RESUMEN

We extend the established transverse customization of light, in particular, amplitude, phase, and polarization modulation of the light field, and its analysis by the third, longitudinal spatial dimension, enabling the visualization of longitudinal structures in sub-wavelength (nm) range. To achieve this high-precision and three-dimensional beam shaping and detection, we propose an approach based on precise variation of indices in the superposition of higher-order Laguerre-Gaussian beams and cylindrical vector beams in a counter-propagation scheme. The superposition is analyzed experimentally by digital, holographic counter-propagation leading to stable, reversible and precise scanning of the light volume. Our findings show tailored amplitude, phase and polarization structures, adaptable in 3D space by mode indices, including sub-wavelength structural changes upon propagation, which will be of interest for advanced material machining and optical trapping.

4.
Opt Express ; 29(9): 12967-12975, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985042

RESUMEN

We customize a transversely structured, tunable light landscape on the basis of orbital angular momentum (OAM)-carrying beams for the purpose of advanced optical manipulation. Combining Laguerre-Gaussian (LG) modes with helical phase fronts of opposite OAM handedness, counter-rotating transfer of OAM is enabled in a concentric intensity structure, creating a dynamic "grinding" scenario on dielectric microparticles. We demonstrate the ability to trap and rotate silica spheres of various sizes and exploit the light fields' feature to spatially separate trapped objects by their size. We show the adaptability of the light field depending on the chosen LG mode indices, allowing on-demand tuning of the trapping potential and sorting criteria. The versatility of our approach for biomedical application is examined by spatial discriminating yeast cells and silica spheres of distinct diameter.

5.
Opt Express ; 27(21): 29685-29696, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684226

RESUMEN

A major current challenge in the field of structured light represents the development from three- (3d) to four-dimensional (4d) electric field structures, in which one exploits the transverse as well as longitudinal field components in 3d space. For this purpose, non-paraxial fields are required in order to be able to access visionary 3d topological structures as optical cones, ribbons and Möbius strips formed by 3d polarization states. We numerically demonstrate the customization of such complex topological structures by controlling generic polarization singularities in non-paraxial light fields. Our approach is based on tightly focusing tailored higher-order vector beams in combination with phase vortices. Besides demonstrating the appearance of cones and ribbons around the optical axis, we evince sculpting arrays of Möbius strips realized around off-axis generic singularities.

6.
Nat Commun ; 10(1): 4308, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541086

RESUMEN

Recently, four-dimensional (4D) functional nano-materials have attracted considerable attention due to their impact in cutting-edge fields such as nano-(opto)electronics, -biotechnology or -biomedicine. Prominent optical functionalizations, representing the fourth dimension, require precisely tailored light fields for its optimal implementation. These fields need to be like-wise 4D, i.e., nano-structured in three-dimensional (3D) space while polarization embeds additional longitudinal components. Though a couple of approaches to realize 4D fields have been suggested, their breakthrough is impeded by a lack of appropriate analysis techniques. Combining molecular self-assembly, i.e., nano-chemistry, and nano-optics, we propose a polarization nano-tomography of respective fields using the functional material itself as a sensor. Our method allows a single-shot identification of non-paraxial light fields at nano-scale resolution without any data post-processing. We prove its functionality numerically and experimentally, elucidating its amplitude, phase and 3D polarization sensitivity. We analyze non-paraxial field properties, demonstrating our method's capability and potential for next generation 4D materials.

7.
Opt Lett ; 43(23): 5821-5824, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499951

RESUMEN

Polarization singularities in vectorial light fields have become an important tool for different cutting-edge applications such as information processing with integer information units. However, even though vectorial singularities naturally form configurations of multiple singular points, up to now only rather simple, mostly cylindrical vector beams including single central singularities, have been considered. Here we demonstrate the customization of extended singularity networks embedded in a class of complex polarization structures based on general Ince-Gaussian modes, namely, Ince-Gaussian vector modes. Contributing to fundamental singular optics, our investigations evince the conservation of tailored singularity arrangements upon 3D propagation, whereby respective modes enlarge the range of stable vectorial fields, paving the way to information technologies with a significantly enhanced number of degrees of freedom.

8.
Opt Express ; 26(21): 26946-26960, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30469772

RESUMEN

Using spatial modes for quantum key distribution (QKD) has become highly topical due to their infinite dimensionality, promising high information capacity per photon. However, spatial distortions reduce the feasible secret key rates and compromise the security of a quantum channel. In an extreme form such a distortion might be a physical obstacle, impeding line-of-sight for free-space channels. Here, by controlling the radial degree of freedom of a photon's spatial mode, we are able to demonstrate hybrid high-dimensional QKD through obstacles with self-reconstructing single photons. We construct high-dimensional mutually unbiased bases using spin-orbit hybrid states that are radially modulated with a non-diffracting Bessel-Gaussian (BG) profile, and show secure transmission through partially obstructed quantum links. Using a prepare-measure protocol we report higher quantum state self-reconstruction and information retention for the non-diffracting BG modes as compared to Laguerre-Gaussian modes, obtaining a quantum bit error rate (QBER) that is up to 3× lower. This work highlights the importance of controlling the radial mode of single photons in quantum information processing and communication as well as the advantages of QKD with hybrid states.

9.
Light Sci Appl ; 7: 18009, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839563

RESUMEN

It is well known that the entanglement of a quantum state is invariant under local unitary transformations. This rule dictates, for example, that the entanglement of internal degrees of freedom of a photon remains invariant during free-space propagation. Here, we outline a scenario in which this paradigm does not hold. Using local Bell states engineered from classical vector vortex beams with non-separable degrees of freedom, the so-called classically entangled states, we demonstrate that the entanglement evolves during propagation, oscillating between maximally entangled (purely vector) and product states (purely scalar). We outline the spin-orbit interaction behind these novel propagation dynamics and confirm the results experimentally, demonstrating spin-orbit coupling in paraxial beams. This demonstration highlights a hitherto unnoticed property of classical entanglement and simultaneously offers a device for the on-demand delivery of vector states to targets, for example, for dynamic laser materials processing, switchable resolution within stimulated emission depletion (STED) systems, and a tractor beam for entanglement.

10.
Opt Express ; 25(17): 20194-20201, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29041703

RESUMEN

Vector beams are of major importance to tailor tightly focused fields by creating an additional z-polarization component. Till now, mainly focusing properties of fundamental vector beams have been investigated, whereas the knowledge of focused higher-order singular vector fields is still missing. We fill this gap by numerical analysis of these fields, applying their attractive characteristics as including a spatially adjustable amount of radial and azimuthal components. We demonstrate the realization of three-dimensional polarization structures whose total intensity resembles dark stars and bright flowers. Further, we tailor these focal intensity landscapes by modulating the order of incident vector fields. This in turn allows shaping the focus of a light field for specific applications as e.g. advanced microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA