Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 9, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238759

RESUMEN

BACKGROUND: The locked-in syndrome (LIS), due to a lesion in the pons, impedes communication. This situation can also be met after some severe brain injury or in advanced Amyotrophic Lateral Sclerosis (ALS). In the most severe condition, the persons cannot communicate at all because of a complete oculomotor paralysis (Complete LIS or CLIS). This even prevents the detection of consciousness. Some studies suggest that auditory brain-computer interface (BCI) could restore a communication through a « yes-no¼ code. METHODS: We developed an auditory EEG-based interface which makes use of voluntary modulations of attention, to restore a yes-no communication code in non-responding persons. This binary BCI uses repeated speech sounds (alternating "yes" on the right ear and "no" on the left ear) corresponding to either frequent (short) or rare (long) stimuli. Users are instructed to pay attention to the relevant stimuli only. We tested this BCI with 18 healthy subjects, and 7 people with severe motor disability (3 "classical" persons with locked-in syndrome and 4 persons with ALS). RESULTS: We report online BCI performance and offline event-related potential analysis. On average in healthy subjects, online BCI accuracy reached 86% based on 50 questions. Only one out of 18 subjects could not perform above chance level. Ten subjects had an accuracy above 90%. However, most patients could not produce online performance above chance level, except for two people with ALS who obtained 100% accuracy. We report individual event-related potentials and their modulation by attention. In addition to the classical P3b, we observed a signature of sustained attention on responses to frequent sounds, but in healthy subjects and patients with good BCI control only. CONCLUSIONS: Auditory BCI can be very well controlled by healthy subjects, but it is not a guarantee that it can be readily used by the target population of persons in LIS or CLIS. A conclusion that is supported by a few previous findings in BCI and should now trigger research to assess the reasons of such a gap in order to propose new and efficient solutions. CLINICAL TRIAL REGISTRATIONS: No. NCT02567201 (2015) and NCT03233282 (2013).


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Personas con Discapacidad , Síndrome de Enclaustramiento , Trastornos Motores , Humanos , Electroencefalografía
2.
Front Hum Neurosci ; 10: 347, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458364

RESUMEN

The relatively young field of Brain-Computer Interfaces has promoted the use of electrophysiology and neuroimaging in real-time. In the meantime, cognitive neuroscience studies, which make extensive use of functional exploration techniques, have evolved toward model-based experiments and fine hypothesis testing protocols. Although these two developments are mostly unrelated, we argue that, brought together, they may trigger an important shift in the way experimental paradigms are being designed, which should prove fruitful to both endeavors. This change simply consists in using real-time neuroimaging in order to optimize advanced neurocognitive hypothesis testing. We refer to this new approach as the instantiation of an Active SAmpling Protocol (ASAP). As opposed to classical (static) experimental protocols, ASAP implements online model comparison, enabling the optimization of design parameters (e.g., stimuli) during the course of data acquisition. This follows the well-known principle of sequential hypothesis testing. What is radically new, however, is our ability to perform online processing of the huge amount of complex data that brain imaging techniques provide. This is all the more relevant at a time when physiological and psychological processes are beginning to be approached using more realistic, generative models which may be difficult to tease apart empirically. Based upon Bayesian inference, ASAP proposes a generic and principled way to optimize experimental design adaptively. In this perspective paper, we summarize the main steps in ASAP. Using synthetic data we illustrate its superiority in selecting the right perceptual model compared to a classical design. Finally, we briefly discuss its future potential for basic and clinical neuroscience as well as some remaining challenges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA