Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Signals Sens ; 13(2): 165-172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448546

RESUMEN

It has been a long time since we use magnetic resonance imaging (MRI) to detect brain diseases and many useful techniques have been developed for this task. However, there is still a potential for further improvement of classification of brain diseases in order to be sure of the results. In this research we presented, for the first time, a non-linear feature extraction method from the MRI sub-images that are obtained from the three levels of the two-dimensional Dual tree complex wavelet transform (2D DT-CWT) in order to classify multiple brain disease. After extracting the non-linear features from the sub-images, we used the spectral regression discriminant analysis (SRDA) algorithm to reduce the classifying features. Instead of using the deep neural networks that are computationally expensive, we proposed the Hybrid RBF network that uses the k-means and recursive least squares (RLS) algorithm simultaneously in its structure for classification. To evaluate the performance of RBF networks with hybrid learning algorithms, we classify nine brain diseases based on MRI processing using these networks, and compare the results with the previously presented classifiers including, supporting vector machines (SVM) and K-nearest neighbour (KNN). Comprehensive comparisons are made with the recently proposed cases by extracting various types and numbers of features. Our aim in this paper is to reduce the complexity and improve the classifying results with the hybrid RBF classifier and the results showed 100 percent classification accuracy in both the two class and the multiple classification of brain diseases in 8 and 10 classes. In this paper, we provided a low computational and precise method for brain MRI disease classification. the results show that the proposed method is not only accurate but also computationally reasonable.

2.
J Med Signals Sens ; 10(4): 219-227, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33575194

RESUMEN

BACKGROUND: The obstructive sleep apnea (OSA) detection has become a hot research topic because of the high risk of this disease. In this paper, we tested some powerful and low computational signal processing techniques for this task and compared their results with the recent achievements in OSA detection. METHODS: The Dual-tree complex wavelet transform (DT-CWT) is used in this paper to extract feature coefficients. From these coefficients, eight non-linear features are extracted and then reduced by the Multi-cluster feature selection (MCFS) algorithm. The remaining features are applied to the hybrid "K-means, RLS" RBF network which is a low computational rival for the Support vector machine (SVM) networks family. RESULTS AND CONCLUSION: The results showed suitable OSA detection percentage near 96% with a reduced complexity of nearly one third of the previously presented SVM based methods.

3.
J Electr Bioimpedance ; 11(1): 4-11, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33584897

RESUMEN

Apnea is one of the deadliest diseases that can be prevented and cured if it is detected in time. In this paper, we propose a precise method for early detection of the obstructive sleep apnea (OSA) disease using the latest feature selection and extraction methods. The feature selection in this paper is based on the Dual tree complex wavelet (DT-CWT) coefficients of the ECG signals of several patients. The feature extraction from these coefficients is done using frequency and time techniques. The Feature selection is done using the spectral regression discriminant analysis (SRDA) algorithm and the classification is performed using the hybrid RBF network. A hybrid RBF neural network is introduced in this paper for detecting apnea that is much less computationally demanding than the previously presented SVM networks. Our findings showed a 3 percent improvement in the detection and at least a 30 percent reduction in the computational complexity in comparison with methods that have been presented recently.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA