Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15874, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982265

RESUMEN

Random mutagenesis, such as error-prone PCR (epPCR), is a technique capable of generating a wide variety of a single gene. However, epPCR can produce a large number of mutated gene variants, posing a challenge in ligating these mutated PCR products into plasmid vectors. Typically, the primers for mutagenic PCRs incorporate artificial restriction enzyme sites compatible with chosen plasmids. Products are cleaved and ligated to linearized plasmids, then recircularized by DNA ligase. However, this cut-and-paste method known as ligation-dependent process cloning (LDCP), has limited efficiency, as the loss of potential mutants is inevitable leading to a significant reduction in the library's breadth. An alternative to LDCP is the circular polymerase extension cloning (CPEC) method. This technique involves a reaction where a high-fidelity DNA polymerase extends the overlapping regions between the insert and vector, forming a circular molecule. In this study, our objective was to compare the traditional cut-and-paste enzymatic method with CPEC in producing a variant library from the gene encoding the red fluorescent protein (DsRed2) obtained by epPCR. Our findings suggest that CPEC can accelerate the cloning process in gene library generation, enabling the acquisition of a greater number of gene variants compared to methods reliant on restriction enzymes.


Asunto(s)
Clonación Molecular , Biblioteca de Genes , Mutagénesis , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa/métodos , Clonación Molecular/métodos , Vectores Genéticos/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Plásmidos/genética
2.
Mar Biotechnol (NY) ; 25(6): 1099-1109, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864761

RESUMEN

The marine environment is a rich reservoir of diverse biological entities, many of which possess unique properties that are of immense value to biotechnological applications. One such example is the red fluorescent protein derived from the coral Discosoma sp. This protein, encoded by the DsRed gene, has been the subject of extensive research due to its potential applications in various fields. In the study, a variant of the red fluorescent protein was generated through random mutagenesis using the DsRed2 gene as a template. The process employed error-prone PCR (epPCR) to introduce random mutations, leading to the isolation of twelve gene variants. Among these, one variant stood out due to its unique spectral properties, exhibiting dual fluorescence emission at both 480 nm (green) and 550 nm (red). This novel variant was expressed in both Escherichia coli and zebrafish (Danio rerio) muscle, confirming the dual fluorescence emission in both model systems. One of the immediate applications of this novel protein variant is in ornamental aquaculture. The dual fluorescence can serve as a unique marker or trait, enhancing the aesthetic appeal of aquatic species in ornamental settings.


Asunto(s)
Antozoos , Proteína Fluorescente Roja , Animales , Fluorescencia , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Antozoos/genética , Antozoos/metabolismo , Biotecnología , Proteínas Fluorescentes Verdes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA