Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748549

RESUMEN

While recent efforts to catalogue Earth's microbial diversity have focused upon surface and marine habitats, 12-20 % of Earth's biomass is suggested to exist in the terrestrial deep subsurface, compared to ~1.8 % in the deep subseafloor. Metagenomic studies of the terrestrial deep subsurface have yielded a trove of divergent and functionally important microbiomes from a range of localities. However, a wider perspective of microbial diversity and its relationship to environmental conditions within the terrestrial deep subsurface is still required. Our meta-analysis reveals that terrestrial deep subsurface microbiota are dominated by Betaproteobacteria, Gammaproteobacteria and Firmicutes, probably as a function of the diverse metabolic strategies of these taxa. Evidence was also found for a common small consortium of prevalent Betaproteobacteria and Gammaproteobacteria operational taxonomic units across the localities. This implies a core terrestrial deep subsurface community, irrespective of aquifer lithology, depth and other variables, that may play an important role in colonizing and sustaining microbial habitats in the deep terrestrial subsurface. An in silico contamination-aware approach to analysing this dataset underscores the importance of downstream methods for assuring that robust conclusions can be reached from deep subsurface-derived sequencing data. Understanding the global panorama of microbial diversity and ecological dynamics in the deep terrestrial subsurface provides a first step towards understanding the role of microbes in global subsurface element and nutrient cycling.


Asunto(s)
Gammaproteobacteria , Microbiota , Microbiología del Agua , Bacterias/genética , Microbiota/genética , Biomasa , Metagenómica , ARN Ribosómico 16S
2.
Appl Environ Microbiol ; 87(20): e0083221, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34378953

RESUMEN

Iron-bearing minerals are key components of the Earth's crust and potentially critical energy sources for subsurface microbial life. The Deep Mine Microbial Observatory (DeMMO) is situated in a range of iron-rich lithologies, and fracture fluids here reach concentrations as high as 8.84 mg/liter. Iron cycling is likely an important process, given the high concentrations of iron in fracture fluids and detection of putative iron-cycling taxa via marker gene surveys. However, a previous metagenomic survey detected no iron cycling potential at two DeMMO localities. Here, we revisited the potential for iron cycling at DeMMO using a new metagenomic data set including all DeMMO sites and FeGenie, a new annotation pipeline that is optimized for the detection of iron cycling genes. We annotated functional genes from whole metagenomic assemblies and metagenome-assembled genomes and characterized putative iron cycling pathways and taxa in the context of local geochemical conditions and available metabolic energy estimated from thermodynamic models. We reannotated previous metagenomic data, revealing iron cycling potential that was previously missed. Across both metagenomic data sets, we found that not only is there genetic potential for iron cycling at DeMMO, but also, iron is likely an important source of energy across the system. In response to the dramatic differences we observed between annotation approaches, we recommend the use of optimized pipelines where the detection of iron cycling genes is a major goal. IMPORTANCE We investigated iron cycling potential among microbial communities inhabiting iron-rich fracture fluids to a depth of 1.5 km in the continental crust. A previous study found no iron cycling potential in the communities despite the iron-rich nature of the system. A new tool for detecting iron cycling genes was recently published, which we used on a new data set. We combined this with a number of other approaches to get a holistic view of metabolic strategies across the communities, revealing iron cycling to be an important process here. In addition, we used the tool on the data from the previous study, revealing previously missed iron cycling potential. Iron is common in continental crust; thus, our findings are likely not unique to our study site. Our new view of important metabolic strategies underscores the importance of choosing optimized tools for detecting the potential for metabolisms like iron cycling that may otherwise be missed.


Asunto(s)
Hierro/metabolismo , Microbiota/genética , Bacterias , Fenómenos Geológicos , Metagenoma , Metagenómica , ARN Ribosómico 16S , South Dakota
3.
Geobiology ; 16(3): 319-337, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29656514

RESUMEN

Laguna Bacalar is a sulfate-rich freshwater lake on the Yucatan Peninsula that hosts large microbialites. High sulfate concentrations distinguish Laguna Bacalar from other freshwater microbialite sites such as Pavilion Lake and Alchichica, Mexico, as well as from other aqueous features on the Yucatan Peninsula. While cyanobacterial populations have been described here previously, this study offers a more complete characterization of the microbial populations and corresponding biogeochemical cycling using a three-pronged geobiological approach of microscopy, high-throughput DNA sequencing, and lipid biomarker analyses. We identify and compare diverse microbial communities of Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria that vary with location along a bank-to-bank transect across the lake, within microbialites, and within a neighboring mangrove root agglomeration. In particular, sulfate-reducing bacteria are extremely common and diverse, constituting 7%-19% of phylogenetic diversity within the microbialites, and are hypothesized to significantly influence carbonate precipitation. In contrast, Cyanobacteria account for less than 1% of phylogenetic diversity. The distribution of lipid biomarkers reflects these changes in microbial ecology, providing meaningful biosignatures for the microbes in this system. Polysaturated short-chain fatty acids characteristic of cyanobacteria account for <3% of total abundance in Laguna Bacalar microbialites. By contrast, even short-chain and monounsaturated short-chain fatty acids attributable to both Cyanobacteria and many other organisms including types of Alphaproteobacteria and Gammaproteobacteria constitute 43%-69% and 17%-25%, respectively, of total abundance in microbialites. While cyanobacteria are the largest and most visible microbes within these microbialites and dominate the mangrove root agglomeration, it is clear that their smaller, metabolically diverse associates are responsible for significant biogeochemical cycling in this microbialite system.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Biomarcadores/análisis , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Lípidos/análisis , Bacterias/química , Bacterias/citología , Secuenciación de Nucleótidos de Alto Rendimiento , México , Microscopía
4.
Geobiology ; 13(5): 462-77, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25923659

RESUMEN

Correlation between hydrogen isotope fractionation in fatty acids and carbon metabolism in pure cultures of bacteria indicates the potential of biomarker D/H analysis as a tool for diagnosing carbon substrate usage in environmental samples. However, most environments, in particular anaerobic habitats, are built from metabolic networks of micro-organisms rather than a single organism. The effect of these networks on D/H of lipids has not been explored and may complicate the interpretation of these analyses. Syntrophy represents an extreme example of metabolic interdependence. Here, we analyzed the effect of metabolic interactions on the D/H biosignatures of sulfate-reducing bacteria (SRB) using both laboratory maintained cocultures of the methanogen Methanosarcina acetivorans and the SRB Desulfococcus multivorans in addition to environmental samples harboring uncultured syntrophic consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing Deltaproteobacteria (SRB) recovered from deep-sea methane seeps. Consistent with previously reported trends, we observed a ~80‰ range in hydrogen isotope fractionation (ε(lipid-water)) for D. multivorans grown under different carbon assimilation conditions, with more D-enriched values associated with heterotrophic growth. In contrast, for cocultures of D. multivorans with M. acetivorans, we observed a reduced range of ε(lipid-water) values (~36‰) across substrates with shifts of up to 61‰ compared to monocultures. Sediment cores from methane seep settings in Hydrate Ridge (offshore Oregon, USA) showed similar D-enrichment in diagnostic SRB fatty acids coinciding with peaks in ANME/SRB consortia concentration suggesting that metabolic associations are connected to the observed shifts in ε(lipid-water) values.


Asunto(s)
Deltaproteobacteria/metabolismo , Deuterio/análisis , Hidrógeno/análisis , Metabolismo de los Lípidos , Lípidos/química , Methanosarcina/metabolismo , Consorcios Microbianos , Deltaproteobacteria/crecimiento & desarrollo , Methanosarcina/crecimiento & desarrollo , Oregon , Agua de Mar/microbiología
5.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA