Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772774

RESUMEN

Since the turn of the millennium, the development and commercial availability of optical frequency combs has led to a steadily increase of worldwide installed frequency combs and a growing interest in using them for industrial-related metrology applications. Especially, GPS-referenced frequency combs often serve as a "self-calibrating" length standard for laser wavelength calibration in many national metrology institutes with uncertainties better than u = 1 × 10-11. In this contribution, the application of a He-Ne laser source permanently disciplined to a GPS-referenced frequency comb for the interferometric measurements in a nanopositioning machine with a measuring volume of 200 mm × 200 mm × 25 mm (NPMM-200) is discussed. For this purpose, the frequency stability of the GPS-referenced comb is characterized by heterodyning with a diode laser referenced to an ultrastable cavity. Based on this comparison, an uncertainty of u = 9.2 × 10-12 (τ = 8 s, k = 2) for the GPS-referenced comb has been obtained. By stabilizing a tunable He-Ne source to a single comb line, the long-term frequency stability of the comb is transferred onto our gas lasers increasing their long-term stability by three orders of magnitude. Second, short-term fluctuations-related length measurement errors were reduced to a value that falls below the nominal resolving capabilities of our interferometers (ΔL/L = 2.9 × 10-11). Both measures make the influence of frequency distortions on the interferometric length measurement within the NPMM-200 negligible. Furthermore, this approach establishes a permanent link of interferometric length measurements to an atomic clock.

2.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502752

RESUMEN

This paper deals with a planar nanopositioning and -measuring machine, the so-called nanofabrication machine (NFM-100), in combination with a mounted atomic force microscope (AFM). This planar machine has a circular moving range of 100 mm. Due to the possibility of detecting structures in the nanometre range with an atomic force microscope and the large range of motion of the NFM-100, structures can be analysed with high resolution and precision over large areas by combining the two systems, which was not possible before. On the basis of a grating sample, line scans over lengths in the millimetre range are demonstrated on the one hand; on the other hand, the accuracy as well as various evaluation methods are discussed and analysed.

3.
Micromachines (Basel) ; 12(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806235

RESUMEN

The actual technical implementation of conventional interferometers is quite complex and requires manual manufacturing. In combination with the required construction space defined by the optical setup, their applications are limited to selected measuring tasks. In contrast, Standing Wave Interferometers (SWIs) offer an enormous potential for miniaturisation because of their simple linear optical setup, consisting only of a laser source, a measuring mirror and two transparent standing wave sensors for obtaining quadrature signals. The two sensors are located inside the measuring beam and therefore directly influence the length measurement. To reduce optical influences on the standing wave and avoid the need for an exact and long-term stable sensor-to-sensor-distance, a single sensor configuration was developed. There, a phase modulation is superimposed to the sensor signal by a forced oscillation of the measuring mirror. When the correct modulation stroke is applied, the resulting harmonics in the sensor signal are 90° phase-shifted to each other and can hence be used for obtaining quadrature signals for phase demodulation and direction discrimination by an arctan-algorithm.

4.
Virology ; 301(1): 53-63, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12359446

RESUMEN

Replication-competent feline foamy or spuma virus (FFV) vectors were constructed and functionally tested. The unmodified FFV vector genome expressed by the strong human cytomegalovirus immediate early promoter encodes FFV particles that were replication-competent in cell cultures. Virus derived from the cloned FFV DNA replicated and persisted in experimentally infected cats similar to the FFV isolate FUV. A FFV vector partially deleted in the noncoding area of the U3 region was used to transduce the gene for the green fluorescent protein (Gfp) into cell cultures. Gfp was expressed either by an internal ribosomal entry site (IRES) or as C-terminal fusion protein linked to Bet that was recently shown to be essential for FFV replication. Whereas the genetic stability of the IRES-Gfp construct was comparably low, the Bet-Gfp fusion protein was detectable upon serial cell-free vector passages. However, genetic rearrangements also occurred leading to the concomitant loss of marker gene expression.


Asunto(s)
Vectores Genéticos , Spumavirus/genética , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/biosíntesis , Gatos , Quimera/genética , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes , Immunoblotting , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Plásmidos , Proteínas de los Retroviridae/análisis , Spumavirus/inmunología , Spumavirus/aislamiento & purificación , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA