Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1830(10): 4650-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23711511

RESUMEN

BACKGROUND: Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation. METHODS: J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases. RESULTS: ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP. CONCLUSIONS: Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin. GENERAL SIGNIFICANCE: ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.


Asunto(s)
Quinasa 2 de Adhesión Focal/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Receptores Purinérgicos P2X7/fisiología , Animales , Calcio/metabolismo , Línea Celular , Humanos , Transporte Iónico , Macrófagos/enzimología , Ratones
2.
Am J Physiol Cell Physiol ; 290(2): C524-38, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16135543

RESUMEN

Glial cells exhibit distinct cellular domains, somata, and filopodia. Thus the cytoplasmic pH (pH(cyt)) and/or the behavior of the fluorescent ion indicator might be different in these cellular domains because of distinct microenvironments. To address these issues, we loaded C6 glial cells with carboxyseminaphthorhodafluor (SNARF)-1 and evaluated pH(cyt) using spectral imaging microscopy. This approach allowed us to study pH(cyt) in discrete cellular domains with high temporal, spatial, and spectral resolution. Because there are differences in the cell microenvironment that may affect the behavior of SNARF-1, we performed in situ titrations in discrete cellular regions of single cells encompassing the somata and filopodia. The in situ titration parameters apparent acid-base dissociation constant (pK'(a)), maximum ratio (R(max)), and minimum ratio (R(min)) had a mean coefficient of variation approximately six times greater than those measured in vitro. Therefore, the individual in situ titration parameters obtained from specific cellular domains were used to estimate the pH(cyt) of each region. These studies indicated that glial cells exhibit pH(cyt) heterogeneities and pH(cyt) oscillations in both the absence and presence of physiological HCO(3)(-). The amplitude and frequency of the pH(cyt) oscillations were affected by alkalosis, by acidosis, and by inhibitors of the ubiquitous Na(+)/H(+) exchanger- and HCO(3)(-)-based H(+)-transporting mechanisms. Optical imaging approaches used in conjunction with BCECF as a pH probe corroborated the existence of pH(cyt) oscillations in glial cells.


Asunto(s)
Citoplasma/química , Concentración de Iones de Hidrógeno , Microscopía Fluorescente/métodos , Neuroglía/química , Animales , Benzopiranos/metabolismo , Bicarbonatos/química , Calibración , Línea Celular , Fluoresceínas/metabolismo , Colorantes Fluorescentes/metabolismo , Naftoles/metabolismo , Neuroglía/citología , Ratas , Rodaminas/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA