RESUMEN
E coli isolates (108) from Mexican women, clinically diagnosed with urinary tract infection, were screened to identify virulence genes, phylogenetic groups, and antibiotic resistance. Isolates were identified by MicroScan4 system; additionally, the minimum inhibitory concentration (MIC) was assessed. The phylogenetic groups and 16 virulence genes encoding adhesins, toxins, siderophores, lipopolysaccharide (LPS), and invasins were identified by PCR. Phylogenetic groups distribution was as follows: B1 9.3%, A 30.6%, B2 55.6%, and D 4.6%. Virulence genes prevalence was ecp 98.1%, fimH 86.1%, traT 77.8%, sfa/focDE 74.1%, papC 62%, iutA 48.1%, fyuA 44.4%, focG 2.8%, sfaS 1.9%, hlyA 7.4%, cnf-1 6.5%, cdt-B 0.9%, cvaC 2.8%, ibeA 2.8%, and rfc 0.9%. Regarding antimicrobial resistance it was above 50% to ampicillin/sulbactam, ampicillin, piperacillin, trimethoprim/sulfamethoxazole, ciprofloxacin, and levofloxacin. Uropathogenic E. coli clustered mainly in the pathogenic phylogenetic group B2. The isolates showed a high presence of siderophores and adhesion genes and a low presence of genes encoding toxins. The high frequency of papC gene suggests that these isolates have the ability to colonize the kidneys. High resistance to drugs considered as first choice treatment such as trimethoprim/sulfamethoxazole and fluoroquinolones was consistently observed.
Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Genes Bacterianos , Infecciones Urinarias/microbiología , Factores de Virulencia/genética , Adulto , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/aislamiento & purificación , Femenino , Humanos , México , Filogenia , Reacción en Cadena de la Polimerasa , Factores de Virulencia/metabolismoRESUMEN
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system (T3SS) to inject effectors into host cells and alter cellular physiology. The aim of the present study was to identify targets of human secretory immunoglobulin A (sIgA) antibodies from the proteins delivered by EPEC into HEp-2 cells after infection. Bacterial proteins delivered into EPEC-infected cells were obtained in sub-cellular fractions (cytoplasmic, membrane, and cytoskeleton) and probed with sIgA antibodies from human milk and analyzed by Western blotting. These sIgA antibodies reacted with Tir and EspB in the cytoplasmic and membrane fractions, and with intimin in the membrane fraction mainly. The sIgA also identified an EPEC surface-associated Heat-shock protein 70 (Hsp70) in HEp-2 cells infected with EPEC. Purified Hsp70 from EPEC was able to bind to HEp-2 cells, suggesting adhesive properties in this protein. EspC secreted to the medium reacted strongly with the sIgA antibodies. An EPEC 115 kDa protein, unrelated to the EspC protein, was detected in the cytoplasm of infected HEp-2 cells, suggesting that this is a new protein translocated by EPEC. The results suggest that there is a strong host antibody response to Tir and intimin, which are essential proteins for attaching and effacing (A/E) pathogen mediated disease.