Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108531

RESUMEN

The aim of this study was to prepare and characterize the glasses made of x(Fe2O3∙V2O5)∙(100 - x)[P2O5∙CaO] with x ranging of 0-50%. The contribution of Fe2O3 and V2O5 amount on the structure of P2O5·CaO matrix was investigated. The vitreous materials were characterized by XRD (X-ray diffraction analysis), EPR (Electron Paramagnetic Resonance) spectroscopy, and magnetic susceptibility measurements. A hyperfine structure typical for isolated V4+ ions was noticed to all spectra containing low amount of V2O5. The XRD spectra show the amorphous nature of samples, apart x = 50%. An overlap of the EPR spectrum of a broad line without the hyperfine structure characteristic of clustered ions was observed with increasing V2O5 content. The results of magnetic susceptibility measurements explain the antiferromagnetic or ferromagnetic interactions expressed between the iron and vanadium ions in the investigated glass.


Asunto(s)
Hierro , Vanadio , Vanadio/química , Calcio/química , Fosfatos de Calcio/química , Fenómenos Magnéticos , Vidrio/química
2.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055266

RESUMEN

The synthesis of nanoparticles inside microorganisms is an economical alternative to chemical and physical methods of nanoparticle synthesis. In this study, ferrihydrite nanoparticles synthesized by Klebsiella oxytoca bacterium in special conditions were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS), small-angle X-ray (SAXS), UV-Vis spectroscopy, fluorescence, fluorescence resonance energy transfer (FRET), and molecular docking. The morphology and the structure of the particles were characterized by means of SEM and SAXS. The elemental content was determined by means of the EDS method. The absorption properties of the ferrihydrite nanoparticles were investigated by UV-Vis spectroscopy. The binding mechanism of the biogenic ferrihydrite nanoparticles to Bovine Serum Albumin (BSA) protein, studied by fluorescence, showed a static and weak process, combined with FRET. Protein denaturation by temperature and urea in the presence of the ferrihydrite nanoparticles demonstrated their influence on the unfolding process. The AutoDock Vina and UCSF Chimera programs were used to predict the optimal binding site of the ferrihydrite to BSA and to find the location of the hydrophobic cavities in the sub-domain IIA of the BSA structure.

3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34210014

RESUMEN

Human serum transferrin (HST) is a glycoprotein involved in iron transport that may be a candidate for functionalized nanoparticles to bind and target cancer cells. In this study, the effects of the simple and doped with cobalt (Co) and copper (Cu) ferrihydrite nanoparticles (Fh-NPs, Cu-Fh-NPs, and Co-Fh-NPs) were studied by spectroscopic and molecular approaches. Fluorescence spectroscopy revealed a static quenching mechanism for all three types of Fh-NPs. All Fh-NPs interacted with HST with low affinity, and the binding was driven by hydrogen bonding and van der Waals forces for simple Fh-NPs and by hydrophobic interactions for Cu-Fh-NPs and Co-Fh-NPs binding, respectively. Of all samples, simple Fh-NPs bound the most to the HST binding site. Fluorescence resonance energy transfer (FRET) allowed the efficient determination of the energy transfer between HST and NPs and the distance at which the transfer takes place and confirmed the mechanism of quenching. The denaturation of the HST is an endothermic process, both in the case of apo HST and HST in the presence of the three types of Fh-NPs. Molecular docking studies revealed that Fh binds with a low affinity to HST (Ka = 9.17 × 103 M-1) in accord with the fluorescence results, where the interaction between simple Fh-NPs and HST was described by a binding constant of 9.54 × 103 M-1.


Asunto(s)
Cobalto/química , Compuestos Férricos/síntesis química , Transferrina/química , Transferrina/metabolismo , Cobre/química , Compuestos Férricos/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Simulación del Acoplamiento Molecular , Nanopartículas , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia , Termodinámica
4.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33419335

RESUMEN

In the last few years, a great amount of attention has been given to nanoparticles research due to their physicochemical properties that allow their use in analytical instruments or in promising imaging applications on biological systems. The use of ferrihydrite nanoparticles (Fh-NPs) in practical applications implies a particular control of their magnetic properties, stability, biocompatibility, interaction with the surface of the target, and low toxicity. In this study, the formation and organization of human serum albumin (HSA) molecules around the simple Fh-NPs and Fh-NPs doped with Co and Cu were examined by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) in terms of morphology and particle size. The topology of all Fh-NPs shows an organized area of HSA around each type of Fh-NP. Molecular docking studies were used in order to determine the probable location of the ferrihydrite in the HSA structure. The thermal stability of these nanohybrids was further investigated by fluorimetry, using 214-Trp residue from HSA as a spectral sensor. The denaturation temperature (Tm) was determined, and stabilization of the HSA structure in the presence of Fh-NPs was discussed. This study could be a starting point for the development of different applications targeting the structure and stability of Fh-NPs complexes with proteins.


Asunto(s)
Compuestos Férricos/química , Nanopartículas del Metal/química , Albúmina Sérica/química , Cobalto/química , Cobre/química , Humanos , Nanopartículas del Metal/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Simulación del Acoplamiento Molecular , Tamaño de la Partícula , Albúmina Sérica/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA