Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 181: 109061, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39186904

RESUMEN

Sonothrombolysis is a technique that employs the ultrasound waves to break down the clot. Recent studies have demonstrated significant improvement in the treatment efficacy when combining two ultrasound waves of different frequencies. Nevertheless, the findings remain conflicted on the ideal frequency pairing that leads to an optimal treatment outcome. Existing experimental studies are constrained by the limited range of frequencies that can be investigated, while numerical studies are typically confined to spherical microbubble dynamics, thereby restricting the scope of the analysis. To overcome this, the present study investigated the microbubble dynamics caused by the different combinations of ultrasound frequencies. This was carried out using computational modelling as it enables the visualisation of the microbubble behaviour, which is difficult in experimental studies due to the opacity of blood. The results showed that the pairings of two ultrasound waves with low frequencies generally produced stronger cavitation and higher flow-induced shear stress on the clot surface. However, one should avoid the frequency pairings that are integer multipliers of each other, i.e., frequency ratio of 1/3, 1/2 and 2, as they led to resultant wave with low pressure amplitude that weakened the cavitation. At 0.5 + 0.85 MHz, the microbubble caused the highest shear stress of 60.5 kPa, due to its large translational distance towards the clot. Although the pressure threshold for inertial cavitation was reduced using dual-frequency ultrasound, the impact of the high-speed jet can only be realised when the microbubble travelled close to the clot. The results obtained from the present study provide groundwork for deeper understanding on the microbubble dynamics during dual-frequency sonothrombolysis, which is of paramount importance for its optimisations and the subsequent clinical translation.


Asunto(s)
Simulación por Computador , Microburbujas , Terapia por Ultrasonido , Humanos , Terapia por Ultrasonido/métodos , Modelos Cardiovasculares , Trombosis/diagnóstico por imagen
2.
Materials (Basel) ; 16(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36676599

RESUMEN

Many concrete structures, such as bridges and wind turbine towers, fail mostly due to the fatigue rapture and bending, where the cracks are initiated and propagate under cyclic loading. Modeling the fracture process zone (FPZ) is essential to understanding the cracking behavior of heterogeneous, quasi-brittle materials such as concrete under monotonic and cyclic actions. The paper aims to present a numerical modeling approach for simulating crack growth using a scaled boundary finite element model (SBFEM). The cohesive traction law is explored to model the stress field under monotonic and cyclic loading conditions. In doing so, a new constitutive law is applied within the cohesive response. The cyclic damage accumulation during loading and unloading is formulated within the thermodynamic framework of the constitutive concrete model. We consider two common problems of three-point bending of a single-edge-notched concrete beam subjected to different loading conditions to validate the developed method. The simulation results show good agreement with experimental test measurements from the literature. The presented analysis can provide a further understanding of crack growth and damage accumulation within the cohesive response, and the SBFEM makes it possible to identify the fracture behavior of cyclic crack propagation in concrete members.

3.
IEEE Rev Biomed Eng ; PP2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35653443

RESUMEN

Radiofrequency ablation (RFA) combined with saline infusion into tissue is a promising technique to ablate larger tumours. Nevertheless, the application of saline-infused RFA remains at clinical trials due to the contradictory findings as a result of the inconsistencies in experimental procedures. These inconsistencies not only magnify the number of factors to consider during the treatment, but also obscure the understanding of the role of saline in enlarging the coagulation zone. Consequently, this can result in major complications, which includes unwanted thermal damages to adjacent tissues and also incomplete ablation of the tumour. This review aims to identify the key factors of saline responsible for enlarging the coagulation zone during saline-infused RFA, and provide a proper understanding on their effects that is supported with findings from computational studies to ensure a safe and reliable cancer treatment.

4.
J Heart Valve Dis ; 17(1): 54-61; discussion 61, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18365570

RESUMEN

BACKGROUND AND AIM OF THE STUDY: Anterior mitral basal stay chords are relocated to correct prolapse of the anterior mitral leaflet (AML); it has also been suggested that their transection might be used to treat functional ischemic mitral regurgitation. The study aim was to clarify the effect of stay chord transection (SCT) on the hemodynamic aspects of left ventricular outflow. METHODS: Two three-dimensional left ventricular models including the left ventricular outflow tract and saddle-shaped mitral valve before and after SCT were constructed. After SCT, the AML was specified to be more concave and the aortomitral angle to be narrower than before SCT. Time-dependent turbulent flow in a flow range of 10 to 28 l/min during rapid ejection was simulated using the commercial software, FLUENT. RESULTS: Left ventricular outflow before SCT was streamlined along the AML throughout rapid ejection. After SCT, this flow was redirected in the vicinity of the AML, thereby creating a zone of persistent low-momentum recirculation associated with additional energy loss. Consequently, the axial forward flow delivered into the aorta after SCT was diminished. The high wall shear stress, which was concentrated at the fibrous trigones before SCT, was redistributed along the intertrigonal distance after SCT. CONCLUSION: The stay chords, which maintain the natural profile of the AML, are essential to streamline left ventricular outflow, facilitate flow delivery into the aorta, minimize dissipation of potential energy, and to create an optimum wall shear stress pattern that conforms to the fibrous trigones. Transection of the stay chords compromises local hemodynamics, resulting in greater energy loss and unfavorable wall shear stress distribution. The study results emphasize the importance of preserving stay chord function in mitral valve surgeries.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Procedimientos Quirúrgicos Cardíacos/métodos , Cuerdas Tendinosas/cirugía , Ventrículos Cardíacos/fisiopatología , Insuficiencia de la Válvula Mitral/cirugía , Válvula Mitral/cirugía , Modelos Cardiovasculares , Función Ventricular Izquierda/fisiología , Cuerdas Tendinosas/fisiopatología , Simulación por Computador , Humanos , Imagenología Tridimensional , Válvula Mitral/patología , Válvula Mitral/fisiopatología , Insuficiencia de la Válvula Mitral/fisiopatología , Resistencia al Corte
5.
J Biomech ; 40(10): 2167-73, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17166505

RESUMEN

With advances in tissue engineering and improvement of surgical techniques, stentless biological valves and valve-sparing procedures have become alternatives to traditional aortic valve replacement with stented bioprostheses or mechanical valves. New surgical techniques preserve the advantages of native valves but require better understanding of the anatomical structure of the aortic root. Silicone rubber was injected in fresh aortic roots of nine human cadavers under the physiological closing pressure of 80 mmHg. The casts reproduced every detail of the aortic root anatomy and were used to digitize 27 leaflet attachment lines (LALs) of the aortic valves. LALs were normalized and described with a mathematical model. LALs were found to follow a pattern with the right coronary being the largest followed by the non-coronary and then the left coronary. During diastole, the aortic valve LAL can be described by an intersection between a created tube and an extruded parabolic surface. This geometrical definition of the LAL during end diastole gives a better understanding of the aortic root anatomy and could be useful for heart valve design and improvement of aortic valve reconstruction technique.


Asunto(s)
Aorta/anatomía & histología , Aorta/fisiología , Válvula Aórtica/anatomía & histología , Válvula Aórtica/fisiología , Modelos Cardiovasculares , Adulto , Bioprótesis , Diástole/fisiología , Femenino , Prótesis Valvulares Cardíacas , Implantación de Prótesis de Válvulas Cardíacas , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA