Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Cardiol ; 282: 76-80, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30772011

RESUMEN

BACKGROUND: The inhibitory subunit of cardiac troponin (cTnI) is a gold standard cardiac biomarker and also an essential protein in cardiomyocyte excitation-contraction coupling. The interactions of cTnI with other proteins are fine-tuned by post-translational modification of cTnI. Mutations in cTnI can lead to hypertrophic cardiomyopathy. METHODS AND RESULTS: Here we report, for the first time, that cTnI is modified by arginine methylation in human myocardium. Using Western blot, we observed reduced levels of cTnI arginine methylation in human hypertrophic cardiomyopathy compared to dilated cardiomyopathy biopsies. Similarly, using a rat model of cardiac hypertrophy we observed reduced levels of cTnI arginine methylation compared to sham controls. Using mass spectrometry, we identified cTnI methylation sites at R74/R79 and R146/R148 in human cardiac samples. R146 and R148 lie at the boundary between the critical cTnI inhibitory and switch peptides; PRMT1 methylated an extended inhibitory peptide at R146 and R148 in vitro. Mutations at R145 that have been associated with hypertrophic cardiomyopathy hampered R146/R148 methylation by PRMT1 in vitro. H9c2 cardiac-like cells transfected with plasmids encoding for a methylation-deficient R146A/R148A cTnI protein developed cell hypertrophy, with a 32% increase in cell size after 72 h, compared to control cells. DISCUSSION: Our results provide evidence for a novel and significant cTnI post-translational modification. Our work opens the door to translational investigations of cTnI arginine methylation as a biomarker of disease, which can include e.g. cardiomyopathies, myocardial infarction and heart failure, and offers a novel way to investigate the effect of cTnI mutations in the inhibitory/switch peptides.


Asunto(s)
Arginina/genética , Arginina/metabolismo , Miocardio/metabolismo , Troponina I/genética , Troponina I/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Masculino , Metilación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley
2.
Channels (Austin) ; 11(5): 476-481, 2017 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-28718687

RESUMEN

The cardiac voltage-gated sodium channel (gene: SCN5A, protein: NaV1.5) is responsible for the sodium current that initiates the cardiomyocyte action potential. Research into the mechanisms of SCN5A gene expression has gained momentum over the last few years. We have recently described the transcriptional regulation of SCN5A by GATA4 transcription factor. In this addendum to our study, we report our observations that 1) the linker between domains I and II (LDI-DII) of NaV1.5 contains a nuclear localization signal (residues 474-481) that is necessary to localize LDI-DII into the nucleus, and 2) nuclear LDI-DII activates the SCN5A promoter in gene reporter assays using cardiac-like H9c2 cells. Given that voltage-gated sodium channels are known targets of proteases such as calpain, we speculate that NaV1.5 degradation is signaled to the cell transcriptional machinery via nuclear localization of LDI-DII and subsequent stimulation of the SCN5A promoter.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Potenciales de Acción , Línea Celular , Expresión Génica , Regulación de la Expresión Génica , Humanos , Activación del Canal Iónico , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Regiones Promotoras Genéticas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteolisis
3.
Proteomics Clin Appl ; 11(1-2)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600370

RESUMEN

PURPOSE: Arginine methylation (ArgMe) is one of the most ubiquitous PTMs, and hundreds of proteins undergo ArgMe in, for example, brain. However, the scope of ArgMe in many tissues, including the heart, is currently underexplored. Here, we aimed to (i) identify proteins undergoing ArgMe in human organs, and (ii) expose the relevance of ArgMe in cardiac disease. EXPERIMENTAL DESIGN: The publicly available proteomic data is used to search for ArgMe in 13 human tissues. To induce H9c2 cardiac-like cell hypertrophy glucose is used. RESULTS: The results show that ArgMe is mainly tissue-specific; nevertheless, the authors suggest an embryonic origin of core ArgMe events. In the heart, 103 mostly novel ArgMe sites in 58 nonhistone proteins are found. The authors provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. The pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose is provided. CONCLUSIONS AND CLINICAL RELEVANCE: The work calls for in-depth investigation of ArgMe in normal and diseased tissues using methods including clinical proteomics.


Asunto(s)
Arginina/metabolismo , Miocardio/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/patología , Línea Celular , Feto/metabolismo , Humanos , Metilación , Modelos Biológicos , Mioblastos/citología , Mioblastos/metabolismo
4.
Amino Acids ; 48(3): 641-651, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26503606

RESUMEN

Voltage-gated sodium channels are essential proteins in brain physiology, as they generate the sodium currents that initiate neuronal action potentials. Voltage-gated sodium channels expression, localisation and function are regulated by a range of transcriptional and post-translational mechanisms. Here, we review our understanding of regulation of brain voltage-gated sodium channels, in particular SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3) and SCN8A (NaV1.6), by transcription factors, by alternative splicing, and by post-translational modifications. Our focus is strongly centred on recent research lines, and newly generated knowledge.


Asunto(s)
Encéfalo/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética , Canales de Sodio Activados por Voltaje/genética , Animales , Humanos , Canales de Sodio Activados por Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA