Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Chem ; 7(1): 161, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043846

RESUMEN

Globally, millions of diabetic patients require daily life-saving insulin injections. Insulin heat-lability and fibrillation pose significant challenges, especially in parts of the world without ready access to uninterrupted refrigeration. Here, we have synthesized four human insulin analogs by conjugating ε-amine of B29 lysine of insulin with acetic acid, phenylacetic acid, alanine, and phenylalanine residues. Of these, phenylalanine-conjugated insulin, termed FHI, was the most stable under high temperature (65 °C), elevated salt stress (25 mM NaCl), and varying pH levels (ranging from highly acidic pH 1.6 to physiological pH 7.4). It resists fibrillation for a significantly longer duration with sustained biological activity in in vitro, ex vivo, and in vivo and displays prolonged stability over its native counterpart. We further unravel the critical interactions, such as additional aromatic π-π interactions and hydrogen bonding in FHI, that are notably absent in native insulin. These interactions confer enhanced structural stability of FHI and offer a promising solution to the challenges associated with insulin heat sensitivity.

2.
ACS Appl Mater Interfaces ; 16(6): 6709-6742, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38315446

RESUMEN

Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.


Asunto(s)
Encéfalo , Vesículas Extracelulares , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Barrera Hematoencefálica , Biomarcadores/metabolismo , Biología
3.
Org Biomol Chem ; 21(37): 7561-7566, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37671483

RESUMEN

Insulin often forms toxic fibrils during production and transportation, which are deposited as amyloids at repeated injection sites in diabetic patients. Distinguishing early fibrils from non-fibrillated insulin is difficult. Herein, we introduce a chemically modified human insulin derivative with a distinct visual colour transition upon aggregation, facilitating insulin quality assessment.

4.
Dis Model Mech ; 16(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37681238

RESUMEN

Under normal physiological conditions, the mammalian brain contains very little glycogen, most of which is stored in astrocytes. However, the aging brain and the subareas of the brain in patients with neurodegenerative disorders tend to accumulate glycogen, the cause and significance of which remain largely unexplored. Using cellular models, we have recently demonstrated a neuroprotective role for neuronal glycogen and glycogen synthase in the context of Huntington's disease. To gain insight into the role of brain glycogen in regulating proteotoxicity, we utilized a Drosophila model of Huntington's disease, in which glycogen synthase is either knocked down or expressed ectopically. Enhancing glycogen synthesis in the brains of flies with Huntington's disease decreased mutant Huntingtin aggregation and reduced oxidative stress by activating auto-lysosomal functions. Further, overexpression of glycogen synthase in the brain rescues photoreceptor degeneration, improves locomotor deficits and increases fitness traits in this Huntington's disease model. We, thus, provide in vivo evidence for the neuroprotective functions of glycogen synthase and glycogen in neurodegenerative conditions, and their role in the neuronal autophagy process.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Humanos , Drosophila , Glucógeno Sintasa/genética , Encéfalo/metabolismo , Fenotipo , Proteína Huntingtina/metabolismo , Modelos Animales de Enfermedad , Mamíferos/metabolismo
5.
Chembiochem ; 23(11): e202100678, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35025120

RESUMEN

The discovery of insulin came with very high hopes for diabetic patients. In 2021, the world celebrated the 100th anniversary of the discovery of this vital hormone. However, external use of insulin is highly affected by its aggregating tendency that occurs during its manufacturing, transportation, and improper handling which ultimately leads to its pharmaceutically and biologically ineffective form. In this review, we aim to discuss the various approaches used for decelerating insulin aggregation which results in the enhancement of its overall structural stability and usage. The approaches that are discussed are broadly classified as either a measure through excipient additions or by intrinsic modifications in the insulin native structure.


Asunto(s)
Insulina , Humanos , Insulina/química
6.
Biol Open ; 10(12)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34817590

RESUMEN

Sexual dimorphism in lifespan, wherein females outlive males, is evident across all animal taxa. The longevity difference between sexes is controlled by multiple physiological processes with complex relationships to one another. In recent years, glycogen, the storage form of glucose, has been shown to cause rapid aging upon forced synthesis in healthy neurons. Glycogen in the form of corpora amylacea in the aging brain is also widely reported. While these studies did suggest a novel role for glycogen in aging, most of them have focused on pooled samples, and have not looked at sex-specific effects, if any. Given the widespread occurrence of sex-biased expression of genes and the underlying physiology, it is important to look at the sex-specific effects of metabolic processes. In the present study, using transgenic fly lines for the human glycogen synthase, we investigated the sex-specific effects of glycogen on stress resistance, fitness, and survival. We demonstrate that Drosophila melanogaster females with altered levels of glycogen in the brain display a shortened lifespan, increased resistance to starvation, and higher oxidative stress than male flies. The present study thus provides a novel insight into the sex-specific effect of glycogen in survival and aging and how differences in metabolic processes could contribute to sex-specific traits.


Asunto(s)
Drosophila melanogaster , Inanición , Animales , Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Glucógeno/metabolismo , Longevidad , Masculino , Inanición/metabolismo
7.
Autophagy ; 16(11): 2102-2104, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32718210

RESUMEN

Macroautophagy/autophagy is an intracellular degradative pathway that is often induced as a pro-survival process for cells under stress. A few recent reports establish the role of the glycogen metabolic pathway in neuronal cell survival in conditions such as oxidative stress and hypoxia, and the possible link between glycogen synthesis and autophagy induction. This commentary highlights the emerging role of GYS (glycogen synthase) in neuronal autophagy and stress response.


Asunto(s)
Autofagia/fisiología , Glucógeno/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Animales , Supervivencia Celular/fisiología , Humanos , Macroautofagia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA