RESUMEN
Aging is a natural, complex, and individual process that focuses on the progressive decay of the body and a decrease in cell function that begins in approximately the sixth decade of life and ends with death. Current scientific evidence shows that the aging process is mostly related to genetic load and varies because of the environment. Therefore, aging can be adjusted through the intervention of factors that control homeostasis in genetic, biochemical, and immunological processes, including those involving the gut microbiota. Indeed, the diversity of the gut microbiota decreases during aging, based on the presence of modifications in the hormonal, immunological, and operational processes of the gastrointestinal tract. These modifications lead to a state of dysbiosis. However, altering bacterial communities remains complicated due to the great diversity of factors that influence their modification. Alterations caused by the aging process are known to foster dysbiosis and correspond to conditions that determine the degree of frailty in senior citizens. Consequently, the microbial structure can be used as a biomarker for geriatric care in the promotion of healthy aging.
RESUMEN
BACKGROUND: Many factors, such as heredity, ethnicity, nutrition and other lifestyle factors, have been related to bone mineral density in postmenopausal women. Additionally, bone mass has been significantly associated with decreased estrogen levels. However, fewstudies have been conducted on premenopausal women. The present study was designed to estimate the relationship between low bone mineral density and levels of serum estradiol and lifestyle factors in premenopausal Mexican women. METHODS: A cross-sectional study was conducted in 270 women between 40 and 48 years of age who participate in the Health Workers Cohort Study. Information on socio-demographic and lifestyle factors were obtained through a self-administered questionnaire. Body mass index and serum estradiol were measured with standard procedures; bone mineral density was assessed using dual-energy X-ray absorptiometry. Multiple linear and logistic regression models were computed to evaluate the relationship between low bone mineral density and levels of serum estradiol and lifestyle factors. RESULTS: In linear regression analysis levels of estradiol, body mass index, physical activity, and vitamin D intake were positively related to bone mineral density. Age, cigarette smoking and caffeine were inversely associated with BMD. Finally, the odds of low bone mineral density increase significantly when the premenopausal women had low levels of serum estradiol (OR = 4.93, 95 % CI: 2.14, 11.37). CONCLUSION: These data support that low serum estradiol, advancing age, lower physical activity, lower vitamin D intake, cigarette smoking, and higher amount of caffeine intake are linked to low bone mineral density in premenopausal Mexican women.