Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 27: 100485, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37705727

RESUMEN

Large Digital Imaging and Communications in Medicine (DICOM) datasets are key to support research and the development of machine learning technology in radiotherapy (RT). However, the tools for multi-centre data collection, curation and standardisation are not readily available. Automated batch DICOM export solutions were demonstrated for a multicentre setup. A Python solution, Collaborative DICOM analysis for RT (CORDIAL-RT) was developed for curation, standardisation, and analysis of the collected data. The setup was demonstrated in the DBCG RT-Nation study, where 86% (n = 7748) of treatments in the inclusion period were collected and quality assured, supporting the applicability of the end-to-end framework.

2.
Acta Oncol ; 47(7): 1406-13, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18686049

RESUMEN

INTRODUCTION: With the purpose of implementing gated radiotherapy for lung cancer patients, this study investigated the interfraction variations in tumour size and internal displacement over entire treatment courses. To explore the potential of image guided radiotherapy (IGRT) the variations were measured using a set-up strategy based on imaging of bony landmarks and compared to a strategy using in room lasers, skin tattoos and cupper landmarks. MATERIALS AND METHODS: During their six week treatment course of 60Gy in 2Gy fractions, ten patients underwent 3 respiratory gated CT scans. The tumours were contoured on each CT scan to evaluate the variations in volumes and position. The lung tumours and the mediastinal tumours were contoured separately. The positional variations were measured as 3D mobility vectors and correlated to matching of the scans using the two different strategies. RESULTS: The tumour size was significantly reduced from the first to the last CT scan. For the lung tumours the reduction was 19%, p=0.03, and for the mediastinal tumours the reduction was 34%, p=0.0007. The mean 3D mobility vector and the SD for the lung tumours was 0.51 cm (+/-0.21) for matching using bony landmarks and 0.85 cm (+/-0.54) for matching using skin tattoos. For the mediastinal tumours the corresponding vectors and SD's were 0.55 cm (+/-0.19) and 0.72 cm (+/-0.43). The differences between the vectors were significant for the lung tumours p=0.004. The interfractional overlap of lung tumours was 80-87% when matched using bony landmarks and 70-76% when matched using skin tattoos. The overlap of the mediastinal tumours were 60-65% and 41-47%, respectively. CONCLUSIONS: Despite the use of gating the tumours varied considerably, regarding both position and volume. The variations in position were dependent on the set-up strategy. Set-up using IGRT was superior to set-up using skin tattoos.


Asunto(s)
Neoplasias Pulmonares/radioterapia , Fenómenos Fisiológicos Respiratorios , Tomografía Computarizada por Rayos X/métodos , Anciano , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Masculino , Neoplasias del Mediastino/diagnóstico por imagen , Persona de Mediana Edad , Tatuaje , Carga Tumoral
3.
Acta Oncol ; 47(7): 1397-405, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18663648

RESUMEN

BACKGROUND: The image quality of 4DCT depends on breathing regularity. Respiratory audio coaching may improve regularity and reduce motion artefacts. We question the safety of coached planning 4DCT without coaching during treatment. We investigated the possibility of coaching to a more stable breathing without changing the breathing amplitude. The interfraction variation of the breathing cycle amplitude in free and coached breathing was studied as well as the possible impact of fatigue on longer coaching sessions. METHODS: Thirteen volunteers completed respiratory audio coaching on 3 days within a 2 week period. An external marker system monitoring the motion of the thoraco-abdominal wall was used to track the respiration. On all days, free breathing and two coached breathing curves were recorded. We assumed that free versus coached breathing from day 1 (reference session) simulated breathing during an uncoached versus coached planning 4DCT, respectively, and compared the mean breathing cycle amplitude to the free versus coached breathing from day 2 and 3 simulating free versus coached breathing during treatment. RESULTS: For most volunteers it was impossible to apply coaching without changes in breathing cycle amplitude. No significant decrease in standard deviation of breathing cycle amplitude distribution was seen. Generally it was not possible to predict the breathing cycle amplitude and its variation the following days based on the breathing in the reference session irrespective of coaching or free breathing. We found a significant tendency towards an increased breathing cycle amplitude variation with the duration of the coaching session. CONCLUSION: These results suggest that large interfraction variation is present in breathing amplitude irrespective of coaching, leading to the suggestion of daily image guidance for verification of respiratory pattern and tumour related motion. Until further investigated it is not recommendable to use coached 4DCT for planning of a free breathing treatment course.


Asunto(s)
Respiración , Tomografía Computarizada por Rayos X/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Radiother Oncol ; 84(1): 40-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17588697

RESUMEN

BACKGROUND AND PURPOSE: This study aimed at quantifying the breathing variations among lung cancer patients over full courses of fractionated radiotherapy. The intention was to relate these variations to the margins assigned to lung tumours, to account for respiratory motion, in fractionated radiotherapy. MATERIALS AND METHODS: Eleven lung cancer patients were included in the study. The patients' chest wall motions were monitored as a surrogate measure for breathing motion during each fraction of radiotherapy by use of an external optical marker. The exhale level variations were evaluated with respect to exhale points and fraction-baseline, defined for intra- and interfraction variations respectively. The breathing amplitude was evaluated as breathing cycle amplitudes and fraction-max-amplitudes defined for intra- and interfraction breathing, respectively. RESULTS: The breathing variations over a full treatment course, including both intra- and interfraction variations, were 15.2mm (median over the patient population), range 5.5-26.7mm, with the variations in exhale level as the major contributing factor. The median interfraction span in exhale level was 14.8mm, whereas the median fraction-max-amplitude was 6.1mm (median of patient individual SD 1.4). The median intrafraction span in exhale level was 1.6mm, and the median breathing cycle amplitude was 4.0mm (median of patient individual SD 1.4). CONCLUSIONS: The variations in externally measured exhale levels are larger than variations in breathing amplitude. The interfraction variations in exhale level are in general are up to 10 times larger than intrafraction variations. Margins to account for respiratory motion cannot safely be based on one planning session, especially not if relying on measuring external marker motion. Margins for lung tumours should include interfraction variations in breathing.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Neoplasias Pulmonares/fisiopatología , Neoplasias Pulmonares/radioterapia , Mecánica Respiratoria , Anciano , Espiración , Femenino , Humanos , Masculino , Persona de Mediana Edad , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA