Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 17(1): 296-304, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29091453

RESUMEN

Modulation of protein activities by reversible post-translational modifications (PTMs) is a major molecular mechanism involved in the control of virtually all cellular processes. One of these PTMs is ubiquitination, which regulates key processes including protein degradation, cell cycle, DNA damage repair, and signal transduction. Because of its importance for numerous cellular functions, ubiquitination has become an intense topic of research in recent years, and proteomics tools have greatly facilitated the identification of many ubiquitination targets. Taking advantage of the StUbEx strategy for exchanging the endogenous ubiquitin with an epitope-tagged version, we created a modified system, StUbEx PLUS, which allows precise mapping of ubiquitination sites by mass spectrometry. Application of StUbEx PLUS to U2OS cells treated with proteasomal inhibitors resulted in the identification of 41 589 sites on 7762 proteins, which thereby revealed the ubiquitous nature of this PTM and demonstrated the utility of the approach for comprehensive ubiquitination studies at site-specific resolution.


Asunto(s)
Sitios de Unión , Péptidos/aislamiento & purificación , Ubiquitina/metabolismo , Ubiquitinación , Línea Celular , Humanos , Espectrometría de Masas , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional
2.
Artículo en Inglés | MEDLINE | ID: mdl-25254050

RESUMEN

Dichloromethane and methanol extracts of seven different food and medicinal plants were tested in a screening platform for identification of extracts with potential bioactivity related to insulin-dependent glucose uptake and fat accumulation. The screening platform included a series of in vitro bioassays, peroxisome proliferator-activated receptor (PPAR) γ-mediated transactivation, adipocyte differentiation of 3T3-L1 cell cultures, and glucose uptake in both 3T3-L1 adipocytes and primary porcine myotubes, as well as one in vivo bioassay, fat accumulation in the nematode Caenorhabditis elegans. We found that dichloromethane extracts of aerial parts of golden root (Rhodiola rosea) and common elder (Sambucus nigra) as well as the dichloromethane extracts of thyme (Thymus vulgaris) and carrot (Daucus carota) were able to stimulate insulin-dependent glucose uptake in both adipocytes and myotubes while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes but were not able to activate PPARγ, indicating a PPARγ-independent effect on glucose uptake.

3.
J Agric Food Chem ; 61(46): 11033-40, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24156563

RESUMEN

Obesity and insulin resistance in skeletal muscles are major features of type 2 diabetes. In the present study, we examined the potential of Sambucus nigra flower (elderflowers) extracts to stimulate glucose uptake (GU) in primary porcine myotubes and reduce fat accumulation (FAc) in Caenorhabditis elegans. Bioassay guided chromatographic fractionations of extracts and fractions resulted in the identification of naringenin and 5-O- caffeoylquinic acid exhibiting a significant increase in GU. In addition, phenolic compounds related to those found in elderflowers were also tested, and among these, kaempferol, ferulic acid, p-coumaric acid, and caffeic acid increased GU significantly. FAc was significantly reduced in C. elegans, when treated with elderflower extracts, their fractions and the metabolites naringenin, quercetin-3-O-rutinoside, quercetin-3-O-glucoside, quercetin-3-O-5″-acetylglycoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, and isorhamnetin-3-O-glucoside and the related phenolic compounds kaempferol and ferulic acid. The study indicates that elderflower extracts contain bioactive compounds capable of modulating glucose and lipid metabolism, suitable for nutraceutical and pharmaceutical applications.


Asunto(s)
Caenorhabditis elegans/metabolismo , Grasas/metabolismo , Flores/química , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo , Extractos Vegetales/farmacología , Sambucus nigra/química , Animales , Transporte Biológico/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Fibras Musculares Esqueléticas/efectos de los fármacos , Obesidad/tratamiento farmacológico , Extractos Vegetales/química , Porcinos
4.
Biochem J ; 437(2): 231-41, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21539519

RESUMEN

ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the ß-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased ß-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.


Asunto(s)
Inhibidor de la Unión a Diazepam/metabolismo , Isoformas de Proteínas/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ácidos Grasos Insaturados/metabolismo , Metabolismo de los Lípidos , Datos de Secuencia Molecular , Mutación , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Inanición/metabolismo , Factores de Transcripción/fisiología , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA