Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396791

RESUMEN

Increasing evidence suggests that the calcium-binding and proinflammatory protein S100A9 is an important player in neuroinflammation-mediated Alzheimer's disease (AD). The amyloid co-aggregation of S100A9 with amyloid-ß (Aß) is an important hallmark of this pathology. Apolipoprotein E (ApoE) is also known to be one of the important genetic risk factors of AD. ApoE primarily exists in three isoforms, ApoE2 (Cys112/Cys158), ApoE3 (Cys112/Arg158), and ApoE4 (Arg112/Arg158). Even though the difference lies in just two amino acid residues, ApoE isoforms produce differential effects on the neuroinflammation and activation of the microglial state in AD. Here, we aim to understand the effect of the ApoE isoforms on the amyloid aggregation of S100A9. We found that both ApoE3 and ApoE4 suppress the aggregation of S100A9 in a concentration-dependent manner, even at sub-stoichiometric ratios compared to S100A9. These interactions lead to a reduction in the quantity and length of S100A9 fibrils. The inhibitory effect is more pronounced if ApoE isoforms are added in the lipid-free state versus lipidated ApoE. We found that, upon prolonged incubation, S100A9 and ApoE form low molecular weight complexes with stochiometric ratios of 1:1 and 2:1, which remain stable under SDS-gel conditions. These complexes self-assemble also under the native conditions; however, their interactions are transient, as revealed by glutaraldehyde cross-linking experiments and molecular dynamics (MD) simulation. MD simulation demonstrated that the lipid-binding C-terminal domain of ApoE and the second EF-hand calcium-binding motif of S100A9 are involved in these interactions. We found that amyloids of S100A9 are cytotoxic to neuroblastoma cells, and the presence of either ApoE isoforms does not change the level of their cytotoxicity. A significant inhibitory effect produced by both ApoE isoforms on S100A9 amyloid aggregation can modulate the amyloid-neuroinflammatory cascade in AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E , Calgranulina B , Agregado de Proteínas , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E3 , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Enfermedades Neuroinflamatorias , Isoformas de Proteínas/metabolismo , Calgranulina B/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835187

RESUMEN

Pancreas-derived islet amyloid polypeptide (IAPP) crosses the blood-brain barrier and co-deposits with amyloid beta (Aß) in brains of type 2 diabetes (T2D) and Alzheimer's disease (AD) patients. Depositions might be related to the circulating IAPP levels, but it warrants further investigation. Autoantibodies recognizing toxic IAPP oligomers (IAPPO) but not monomers (IAPPM) or fibrils have been found in T2D, but studies on AD are lacking. In this study, we have analyzed plasma from two cohorts and found that levels of neither immunoglobulin (Ig) M, nor IgG or IgA against IAPPM or IAPPO were altered in AD patients compared with controls. However, our results show significantly lower IAPPO-IgA levels in apolipoprotein E (APOE) 4 carriers compared with non-carriers in an allele dose-dependent manner, and the decrease is linked to the AD pathology. Furthermore, plasma IAPP-Ig levels, especially IAPP-IgA, correlated with cognitive decline, C-reactive protein, cerebrospinal fluid Aß and tau, neurofibrillary tangles, and brain IAPP exclusively in APOE4 non-carriers. We speculate that the reduction in IAPPO-IgA levels may be caused by increased plasma IAPPO levels or masked epitopes in APOE4 carriers and propose that IgA and APOE4 status play a specific role in clearance of circulatory IAPPO, which may influence the amount of IAPP deposition in the AD brain.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Diabetes Mellitus Tipo 2/metabolismo , Inmunoglobulina A , Polipéptido Amiloide de los Islotes Pancreáticos/sangre , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo
3.
Biomolecules ; 12(3)2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35327638

RESUMEN

Amyloid formation is a pathological process associated with a wide range of degenerative disorders, including Alzheimer's disease, Parkinson's disease, and diabetes mellitus type 2. During disease progression, abnormal accumulation and deposition of proteinaceous material are accompanied by tissue degradation, inflammation, and dysfunction. Agents that can interfere with the process of amyloid formation or target already formed amyloid assemblies are consequently of therapeutic interest. In this context, a few endogenous proteins have been associated with an anti-amyloidogenic activity. Here, we review the properties of transthyretin, apolipoprotein E, clusterin, and BRICHOS protein domain which all effectively interfere with amyloid in vitro, as well as displaying a clinical impact in humans or animal models. Their involvement in the amyloid formation process is discussed, which may aid and inspire new strategies for therapeutic interventions.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Parkinson , Amiloide/metabolismo , Péptidos beta-Amiloides , Proteínas Amiloidogénicas/metabolismo , Animales , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
4.
J Org Chem ; 86(23): 16582-16592, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767366

RESUMEN

Reaction of thiazoline fused 2-pyridones with alkyl halides in the presence of cesium carbonate opens the thiazoline ring via S-alkylation and generates N-alkenyl functionalized 2-pyridones. In the reaction with propargyl bromide, the thiazoline ring opens and subsequently closes via a [2 + 2] cycloaddition between an in situ generated allene and the α,ß-unsaturated methyl ester. This method enabled the synthesis of a variety of cyclobutane fused thiazolino-2-pyridones, of which a few analogues inhibit amyloid ß1-40 fibril formation. Furthermore, other analogues were able to bind mature α-synuclein and amyloid ß1-40 fibrils. Several thiazoline fused 2-pyridones with biological activity tolerate this transformation, which in addition provides an exocyclic alkene as a potential handle for tuning bioactivity.


Asunto(s)
Ciclobutanos , Alquenos , Péptidos beta-Amiloides , Reacción de Cicloadición , Piridonas
5.
Org Biomol Chem ; 19(44): 9758-9772, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34730163

RESUMEN

We herein present the synthesis of diversely functionalized pyrimidine fused thiazolino-2-pyridones via K2S2O8-mediated oxidative coupling of 6-amino-7-(aminomethyl)-thiazolino-2-pyridones with aldehydes. The developed protocol is mild, has wide substrate scope, and does not require transition metal catalyst or base. Some of the synthesized compounds have an ability to inhibit the formation of Amyloid-ß fibrils associated with Alzheimer's disease, while others bind to mature amyloid-ß and α-synuclein fibrils.


Asunto(s)
Aldehídos
6.
Biomolecules ; 11(3)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802170

RESUMEN

Amyloid-formation by the islet amyloid polypeptide (IAPP), produced by the ß-cells in the human pancreas, has been associated with the development of type II diabetes mellitus (T2DM). The human plasma-protein transthyretin (TTR), a well-known amyloid-inhibiting protein, is interestingly also expressed within the IAPP producing ß-cells. In the present study, we have characterized the ability of TTR to interfere with IAPP amyloid-formation, both in terms of its intrinsic stability as well as with regard to the effect of TTR-stabilizing drugs. The results show that TTR can prolong the lag-phase as well as impair elongation in the course of IAPP-amyloid formation. We also show that the interfering ability correlates inversely with the thermodynamic stability of TTR, while no such correlation was observed as a function of kinetic stability. Furthermore, we demonstrate that the ability of TTR to interfere is maintained also at the low pH environment within the IAPP-containing granules of the pancreatic ß-cells. However, at both neutral and low pH, the addition of TTR-stabilizing drugs partly impaired its efficacy. Taken together, these results expose mechanisms of TTR-mediated inhibition of IAPP amyloid-formation and highlights a potential therapeutic target to prevent the onset of T2DM.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos/antagonistas & inhibidores , Prealbúmina/metabolismo , Benzotiazoles/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Prealbúmina/química , Estabilidad Proteica
7.
J Org Chem ; 85(21): 14174-14189, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33099999

RESUMEN

A BF3·OEt2 catalyzed intramolecular Povarov reaction was used to synthesize 15 chromenopyridine fused thiazolino-2-pyridone peptidomimetics. The reaction works with several O-alkylated salicylaldehydes and amino functionalized thiazolino-2-pyridones, to generate polyheterocycles with diverse substitution. The synthesized compounds were screened for their ability to bind α-synuclein and amyloid ß fibrils in vitro. Analogues substituted with a nitro group bind to mature amyloid fibrils, and the activity moreover depends on the positioning of this functional group.


Asunto(s)
Amiloide , alfa-Sinucleína , Péptidos beta-Amiloides , Piridonas
8.
Biomolecules ; 10(1)2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947546

RESUMEN

Apolipoprotein E (ApoE) has become a primary focus of research after the discovery of its strong linkage to Alzheimer's disease (AD), where the ApoE4 variant is the highest genetic risk factor for this disease. ApoE is commonly found in amyloid deposits of different origins, and its interaction with amyloid-ß peptide (Aß), the hallmark of AD, is well known. However, studies on the interaction of ApoEs with other amyloid-forming proteins are limited. Islet amyloid polypeptide (IAPP) is an amyloid-forming peptide linked to the development of type-2 diabetes and has also been shown to be involved in AD pathology and vascular dementia. Here we studied the impact of ApoE on IAPP aggregation and IAPP-induced toxicity on blood vessel pericytes. Using both in vitro and cell-based assays, we show that ApoE efficiently inhibits the amyloid formation of IAPP at highly substoichiometric ratios and that it interferes with both nucleation and elongation. We also show that ApoE protects the pericytes against IAPP-induced toxicity, however, the ApoE4 variant displays the weakest protective potential. Taken together, our results suggest that ApoE has a generic amyloid-interfering property and can be protective against amyloid-induced cytotoxicity, but there is a loss of function for the ApoE4 variant.


Asunto(s)
Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Pericitos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Apolipoproteína E4/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Pericitos/patología , Agregado de Proteínas , Agregación Patológica de Proteínas/patología
9.
FEBS J ; 287(6): 1208-1219, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31571352

RESUMEN

Alzheimer's disease (AD) is strongly linked to amyloid depositions of the Aß peptide (Aß). The lipid-binding protein apolipoprotein E (ApoE) has been found to interfere with Aß amyloid formation and to exert a strong clinical impact to the pathology of AD. The APOE gene exists in three allelic isoforms represented by APOE ε2, APOE ε3, and APOE ε4. Carriers of the APOE ε4 variant display a gene dose-dependent increased risk of developing the disease. Aß amyloids are formed via a nucleation-dependent mechanism where free monomers are added onto a nucleus in a template-dependent manner. Using a combination of surface plasmon resonance and thioflavin-T assays, we here show that ApoE can target the process of fibril elongation and that its interference effectively prevents amyloid maturation. We expose a complex equilibrium where the concentration of ApoE, Aß monomers, and the amount of already formed Aß fibrils will affect the relative proportion and formation rate of mature amyloids versus alternative assemblies. The result illustrates a mechanism which may affect both the clearance rate of Aß assemblies in vivo and the population of cytotoxic Aß assemblies.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Apolipoproteína E4/química , Benzotiazoles/química , Colorantes Fluorescentes/química , Humanos , Tamaño de la Partícula , Resonancia por Plasmón de Superficie , Propiedades de Superficie
10.
BMC Biotechnol ; 19(1): 97, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31829176

RESUMEN

BACKGROUND: Immunogold labeling in combination with transmission electron microscopy analysis is a technique frequently used to correlate high-resolution morphology studies with detailed information regarding localization of specific antigens. Although powerful, the methodology has limitations and it is frequently difficult to acquire a stringent system where unspecific low-affinity interactions are removed prior to analysis. RESULTS: We here describe a combinatorial strategy where surface plasmon resonance and immunogold labeling are used followed by a direct analysis of the sensor-chip surface by scanning electron microscopy. Using this approach, we have probed the interaction between amyloid-ß fibrils, associated to Alzheimer's disease, and apolipoprotein E, a well-known ligand frequently found co-deposited to the fibrillar form of Aß in vivo. The results display a lateral binding of ApoE along the amyloid fibrils and illustrates how the gold-beads represent a good reporter of the binding. CONCLUSIONS: This approach exposes a technique with generic features which enables both a quantitative and a morphological evaluation of a ligand-receptor based system. The methodology mediates an advantage compared to traditional immunogold labeling since all washing steps can be monitored and where a high stringency can be maintained throughout the experiment.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Inmunohistoquímica/métodos , Microscopía Electrónica de Rastreo/métodos , Resonancia por Plasmón de Superficie/métodos , Péptidos beta-Amiloides/química , Apolipoproteínas E/química , Humanos , Unión Proteica
11.
J Org Chem ; 84(7): 3887-3903, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30862161

RESUMEN

We here describe the use of three-component reactions to synthesize tricyclic pyridine ring-fused 2-pyridones. The developed protocols have a wide substrate scope and allow for the installation of diverse chemical functionalities on the tricyclic central fragment. Several of these pyridine-fused rigid polyheterocycles are shown to bind to Aß and α-synuclein fibrils, which are associated with neurodegenerative diseases.


Asunto(s)
Amiloide/química , Compuestos Heterocíclicos de Anillo en Puente/síntesis química , Piridinas/síntesis química , Piridonas/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes , Compuestos Heterocíclicos de Anillo en Puente/química , Piridinas/química , Piridonas/química , Relación Estructura-Actividad , Estirenos/química
12.
Environ Sci Technol ; 52(20): 11865-11874, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30226982

RESUMEN

Thyroid-disrupting chemicals (TDCs) are xenobiotics that can interfere with the endocrine system and cause adverse effects in organisms and their offspring. TDCs affect both the thyroid gland and regulatory enzymes associated with thyroid hormone homeostasis. Transthyretin (TTR) is found in the serum and cerebrospinal fluid of vertebrates, where it transports thyroid hormones. Here, we explored the interspecies variation in TDC binding to human and fish TTR (exemplified by Gilthead seabream ( Sparus aurata)). The in vitro binding experiments showed that TDCs bind with equal or weaker affinity to seabream TTR than to the human TTR, in particular, the polar TDCs (>500-fold lower affinity). Crystal structures of the seabream TTR-TDC complexes revealed that all TDCs bound at the thyroid binding sites. However, amino acid substitution of Ser117 in human TTR to Thr117 in seabream prevented polar TDCs from binding deep in the hormone binding cavity, which explains their low affinity to seabream TTR. Molecular dynamics and in silico alanine scanning simulation also suggested that the protein backbone of seabream TTR is more rigid than the human one and that Thr117 provides fewer electrostatic contributions than Ser117 to ligand binding. This provides an explanation for the weaker affinities of the ligands that rely on electrostatic interactions with Thr117. The lower affinities of TDCs to fish TTR, in particular the polar ones, could potentially lead to milder thyroid-related effects in fish.


Asunto(s)
Dorada , Glándula Tiroides , Animales , Sistema Endocrino , Humanos , Prealbúmina , Hormonas Tiroideas
13.
Data Brief ; 19: 1166-1170, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30228999

RESUMEN

We demonstrate the use of Scanning Electron microscopy (SEM) in combination with Surface Plasmon Resonance (SPR) to probe and verify the formation of amyloid and its morphology on an SPR chip. SPR is a technique that measures changes in the immobilized weight on the chip surface and is frequently used to probe the formation and biophysical properties of amyloid structures. In this context it is of interest to also monitor the morphology of the formed structures. The SPR chip surface is made of a layer of gold, which represent a suitable material for direct analysis of the surface using SEM. The standard SPR chip used here (CM5-chip, GE Healthcare, Uppsala, Sweden) can easily be disassembled and directly analyzed by SEM. In order to verify the formation of amyloid fibrils in our experimental conditions we analyzed also in-solution produced structures by using Transmission Electron Microscopy (TEM). For further details and experimental findings, please refer to the article published in Journal of Molecular Biology, (Brännström K. et al., 2018) [1].

14.
J Mol Biol ; 430(17): 2722-2733, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29890120

RESUMEN

The pathological Aß aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aß peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation. Transthyretin (TTR) obstructs Aß fibril formation in favor of alternative non-fibrillar assemblies, but the mechanism behind this activity is not fully understood. This study shows that TTR does not significantly disturb fibril elongation; rather, it effectively interferes with the formation of oligomeric nuclei. We demonstrate that this interference can be modulated by altering the relative contribution of elongation and nucleation, and we show how TTR's effects can range from being essentially ineffective to almost complete inhibition of fibril formation without changing the concentration of TTR or monomeric Aß.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Prealbúmina/metabolismo , Agregado de Proteínas , Multimerización de Proteína , Humanos , Cinética , Unión Proteica
15.
J Mol Biol ; 430(13): 1940-1949, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29751013

RESUMEN

Fibril formation of the amyloid-ß peptide (Aß) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aß are observed in vivo, but Aß1-40 and Aß1-42 are the dominant forms. The fibril architectures of Aß1-40 and Aß1-42 differ and Aß1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aß1-42 can be cross-templated and incorporated into the ends of Aß1-40 fibrils, while incorporation of Aß1-40 monomers into Aß1-42 fibrils is very poor. We also show that via cross-templating incorporated Aß monomers acquire the properties of the parental fibrils. The suppressed ability of Aß1-40 to incorporate into the ends of Aß1-42 fibrils and the capacity of Aß1-42 monomers to adopt the properties of Aß1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aß1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aß1-40 from adopting the fibrillar properties of Aß1-42 and exposes that the transfer of properties between amyloid-ß fibrils are determined by their path of formation.


Asunto(s)
Péptidos beta-Amiloides/química , Amiloide/química , Fragmentos de Péptidos/química , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Multimerización de Proteína
16.
Aging Cell ; 17(3): e12728, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29453790

RESUMEN

The population of brain pericytes, a cell type important for vessel stability and blood brain barrier function, has recently been shown altered in patients with Alzheimer's disease (AD). The underlying reason for this alteration is not fully understood, but progressive accumulation of the AD characteristic peptide amyloid-beta (Aß) has been suggested as a potential culprit. In the current study, we show reduced number of hippocampal NG2+ pericytes and an association between NG2+ pericyte numbers and Aß1-40 levels in AD patients. We further demonstrate, using in vitro studies, an aggregation-dependent impact of Aß1-40 on human NG2+ pericytes. Fibril-EP Aß1-40 exposure reduced pericyte viability and proliferation and increased caspase 3/7 activity. Monomer Aß1-40 had quite the opposite effect: increased pericyte viability and proliferation and reduced caspase 3/7 activity. Oligomer-EP Aß1-40 had no impact on either of the cellular events. Our findings add to the growing number of studies suggesting a significant impact on pericytes in the brains of AD patients and suggest different aggregation forms of Aß1-40 as potential key regulators of the brain pericyte population size.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Antígenos/metabolismo , Pericitos/metabolismo , Proteoglicanos/metabolismo , Anciano , Anciano de 80 o más Años , Técnicas de Cultivo de Célula , Femenino , Humanos , Masculino , Persona de Mediana Edad
17.
Cell Host Microbe ; 21(3): 376-389, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28279347

RESUMEN

The BabA adhesin mediates high-affinity binding of Helicobacter pylori to the ABO blood group antigen-glycosylated gastric mucosa. Here we show that BabA is acid responsive-binding is reduced at low pH and restored by acid neutralization. Acid responsiveness differs among strains; often correlates with different intragastric regions and evolves during chronic infection and disease progression; and depends on pH sensor sequences in BabA and on pH reversible formation of high-affinity binding BabA multimers. We propose that BabA's extraordinary reversible acid responsiveness enables tight mucosal bacterial adherence while also allowing an effective escape from epithelial cells and mucus that are shed into the acidic bactericidal lumen and that bio-selection and changes in BabA binding properties through mutation and recombination with babA-related genes are selected by differences among individuals and by changes in gastric acidity over time. These processes generate diverse H. pylori subpopulations, in which BabA's adaptive evolution contributes to H. pylori persistence and overt gastric disease.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Mucosa Gástrica/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Mucosa Gástrica/patología , Infecciones por Helicobacter/patología , Concentración de Iones de Hidrógeno
18.
FEBS Lett ; 591(8): 1167-1175, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28267202

RESUMEN

Low pH has a strong stabilising effect on the fibrillar assembly of amyloid ß, which is associated with Alzheimer's disease. The stabilising effect is already pronounced at pH 6.0, suggesting that protonation of histidines might mediate this effect. Through the systematic substitution of the three native histidines in Aß for alanines, we have evaluated their role in fibril stability. Using surface plasmon resonance, we show that at neutral pH the fibrillar forms of all His-Ala variants are destabilised by a factor of 4-12 compared to wild-type Aß. However, none of the His-Ala Aß variants impair the stabilising effect of the fibril at low pH.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Histidina/química , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Sustitución de Aminoácidos , Amiloide/química , Amiloide/ultraestructura , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Transmisión , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Agregación Patológica de Proteínas/patología , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
19.
Environ Sci Technol ; 50(21): 11984-11993, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27668830

RESUMEN

Thyroid disruption by xenobiotics is associated with a broad spectrum of severe adverse outcomes. One possible molecular target of thyroid hormone disrupting chemicals (THDCs) is transthyretin (TTR), a thyroid hormone transporter in vertebrates. To better understand the interactions between TTR and THDCs, we determined the crystallographic structures of human TTR in complex with perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and 2,2',4,4'-tetrahydroxybenzophenone (BP2). The molecular interactions between the ligands and TTR were further characterized using molecular dynamics simulations. A structure-based virtual screening (VS) protocol was developed with the intention of providing an efficient tool for the discovery of novel TTR-binders from the Tox21 inventory. Among the 192 predicted binders, 12 representatives were selected, and their TTR binding affinities were studied with isothermal titration calorimetry, of which seven compounds had binding affinities between 0.26 and 100 µM. To elucidate structural details in their binding to TTR, crystal structures were determined of TTR in complex with four of the identified compounds including 2,6-dinitro-p-cresol, bisphenol S, clonixin, and triclopyr. The compounds were found to bind in the TTR hormone binding sites as predicted. Our results show that the developed VS protocol is able to successfully identify potential THDCs, and we suggest that it can be used to propose THDCs for future toxicological evaluations.


Asunto(s)
Prealbúmina/metabolismo , Glándula Tiroides/metabolismo , Animales , Sitios de Unión , Simulación por Computador , Humanos , Hormonas Tiroideas/metabolismo
20.
PLoS One ; 11(4): e0153529, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27093678

RESUMEN

Amyloid formation of the human plasma protein transthyretin (TTR) is associated with several human disorders, including familial amyloidotic polyneuropathy (FAP) and senile systemic amyloidosis. Dissociation of TTR's native tetrameric assembly is the rate-limiting step in the conversion into amyloid, and this feature presents an avenue for intervention because binding of an appropriate ligand to the thyroxin hormone binding sites of TTR stabilizes the native tetrameric assembly and impairs conversion into amyloid. The desired features for an effective TTR stabilizer include high affinity for TTR, high selectivity in the presence of other proteins, no adverse side effects at the effective concentrations, and a long half-life in the body. In this study we show that the commonly used flame retardant tetrabromobisphenol A (TBBPA) efficiently stabilizes the tetrameric structure of TTR. The X-ray crystal structure shows TBBPA binding in the thyroxine binding pocket with bromines occupying two of the three halogen binding sites. Interestingly, TBBPA binds TTR with an extremely high selectivity in human plasma, and the effect is equal to the recently approved drug tafamidis and better than diflunisal, both of which have shown therapeutic effects against FAP. TBBPA consequently present an interesting scaffold for drug design. Its absorption, metabolism, and potential side-effects are discussed.


Asunto(s)
Excipientes/química , Bifenilos Polibrominados/química , Prealbúmina/química , Amiloide/metabolismo , Amiloidosis/metabolismo , Benzoxazoles/farmacología , Sitios de Unión/fisiología , Línea Celular Tumoral , Cristalografía por Rayos X/métodos , Diflunisal/farmacología , Diseño de Fármacos , Semivida , Humanos , Ligandos , Bifenilos Polibrominados/metabolismo , Prealbúmina/metabolismo , Unión Proteica/fisiología , Tiroxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA