Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 330: 121740, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368119

RESUMEN

Cellulose cryogels are promising eco-friendly materials that exhibit low density, high porosity, and renewability. However, the applications of these materials are limited by their lower mechanical and water resistance compared to petrochemical-based lightweight materials. In this work, nanocelluloses were functionalized with cationic and anionic groups, and these nanomaterials were combined to obtain strong and water-resilient cryogels. To prepare the cryogels, anionic and cationic micro- and nanofibrils (CNFs) were produced at three different sizes and combined in various weight ratios, forming electrostatic complexes. The complex phase was concentrated by centrifugation and freeze-dried. Porous and open cellular structures were assembled in all compositions tested (porosity >90 %). Compressive testing revealed that the most resistant cryogels (1.7 MPa) were obtained with equivalent amounts of negatively and positively charged CNFs with lengths between 100 and 1200 nm. The strength at this condition was achieved as CNF electrostatic complexes assembled in thick cells, as observed by synchrotron X-ray tomography. In addition to mechanical strength, electrostatic complexation provided remarkable structural stability in water for the CNF cryogels, without compromising their biodegradability. This route by electrostatic complexation is a practical strategy to combine and concentrate nanocelluloses to tailor biodegradable lightweight materials with high strength and wet stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA