Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Molecules ; 23(11)2018 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-30423858

RESUMEN

Amphibians´ skin produces a diverse array of antimicrobial peptides that play a crucial role as the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, current knowledge about the presence of peptides with antimicrobial properties is limited to a only few species. Here we used LC-MS-MS to identify antimicrobial peptides with masses ranging from 1000 to 4000 Da from samples of skin secretions of Leptodactylus latrans (Anura: Leptodactylidae). Three novel amino acid sequences were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Ll-1577, P2-Ll-1298, and P3-Ll-2085, inhibited the growth of two ATCC strains, namely Escherichia coli and Staphylococcus aureus. P3-Ll-2085 was the most active peptide. In the presence of trifluoroethanol (TFE) and anionic liposomes, it adopted an amphipathic α-helical structure. P2-Ll-1298 showed slightly lower activity than P3-Ll-2085. Comparison of the MIC values of these two peptides revealed that the addition of seven amino acid residues (GLLDFLK) on the N-terminal of P2-Ll-1298 significantly improved activity against both strains. P1-Ll-1577, which remarkably is an anionic peptide, showed interesting antimicrobial activity against E. coli and S. aureus strain, showing marked membrane selectivity and non-hemolysis. Due to this, P1-L1-1577 emerges as a potential candidate for the development of new antibacterial drugs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Anuros/metabolismo , Piel/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/análisis , Péptidos Catiónicos Antimicrobianos/síntesis química , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Hemólisis , Técnicas de Síntesis en Fase Sólida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
2.
Int J Biol Macromol ; 107(Pt A): 1014-1022, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28951306

RESUMEN

Phospholipases A2 (PLA2s) are important enzymes present in snake venoms and are related to a wide spectrum of pharmacological effects, however the toxic potential and therapeutic effects of acidic isoforms have not been fully explored and understood. Due to this, the present study describes the isolation and biochemical characterization of two new acidic Asp49-PLA2s from Bothrops brazili snake venom, named Braziliase-I and Braziliase-II. The venom was fractionated in three chromatographic steps: ion exchange, hydrophobic interaction and reversed phase. The isoelectric point (pI) of the isolated PLA2s was determined by two-dimensional electrophoresis, and 5.2 and 5.3 pIs for Braziliase-I and II were observed, respectively. The molecular mass was determined with values ​​of 13,894 and 13,869Da for Braziliase-I and II, respectively. Amino acid sequence by Edman degradation and mass spectrometry completed 87% and 74% of the sequences, respectively for Braziliase-I and II. Molecular modeling of isolated PLA2s using acid PLA2BthA-I-PLA2 from B. jararacussu template showed high quality. Both acidic PLA2s showed no significant myotoxic activity, however they induced significant oedematogenic activity. Braziliase-I and II (100µg/mL) showed 31.5% and 33.2% of cytotoxicity on Trypanosoma cruzi and 26.2% and 19.2% on Leishmania infantum, respectively. Braziliase-I and II (10µg) inhibited 96.98% and 87.98% of platelet aggregation induced by ADP and 66.94% and 49% induced by collagen, respectively. The acidic PLA2s biochemical and structural characterization can lead to a better understanding of its pharmacological effects and functional roles in snakebites pathophysiology, as well as its possible biotechnological applications as research probes and drug leads.


Asunto(s)
Fosfolipasas A2/química , Inhibidores de Agregación Plaquetaria/química , Agregación Plaquetaria/efectos de los fármacos , Venenos de Serpiente/química , Secuencia de Aminoácidos/genética , Animales , Bothrops/genética , Leishmania infantum/efectos de los fármacos , Leishmania infantum/patogenicidad , Modelos Moleculares , Fosfolipasas A2/genética , Fosfolipasas A2/aislamiento & purificación , Fosfolipasas A2/farmacología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/farmacología , Homología de Secuencia de Aminoácido , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/patogenicidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-26827743

RESUMEN

Snake venom toxins are related not only in detention, death and the promotion of initial digestion of prey but also due to their different biochemical, structural and pharmacological effects they can result in new drugs. Among these toxins snake venom serine proteases (SVSPs) should be highlighted because they are responsible for inducing changes in physiological functions such as blood coagulation, fibrinolysis, and platelet aggregation. This article presents the first serine protease (SP) isolated from Bothrops brazili: BbrzSP-32. The new SP showed 36 kDa of relative molecular mass and its absolute mass was confirmed by mass spectrometry as 32,520 Da. It presents 79.48% identity when compared to other SVSPs and was able to degrade the α-chain of fibrinogen, in in vitro models, because of this it is considered a SVTLE-A. It showed dose-dependent activity in the process of degradation of fibrin networks demonstrating greater specificity for this activity when compared to its thrombolytic action. BbrzSP-32 demonstrated proteolytic activity on gelatin and chromogenic substrates for serine proteases and thrombin-like enzymes (S-2288 and S-2238 respectively), besides having coagulant activity on human plasma. After pre-incubation with PMSF and benzamidine the coagulant and proteolytic activities on the S-2288 and S-2238 substrates were reduced. BbrzSP-32 shows stability against pH and temperature variations, demonstrating optimum activity between 30 and 40 °C and in the pH range 7.5 to 8.5. A new SP with potential biotechnological application was isolated.


Asunto(s)
Venenos de Crotálidos/química , Serina Proteasas/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Bothrops , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Serina Proteasas/química
4.
Toxicon ; 106: 30-41, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26363289

RESUMEN

This study describes the biochemical and functional characterization of a new metalloproteinase named BbMP-1, isolated from Bothrops brazili venom. BbMP-1 was homogeneous on SDS-PAGE, presented molecular mass of 22,933Da and pI 6.4. The primary structure was partially elucidated with high identity with others metalloproteinases from Viperidae venoms. The enzymatic activity on azocasein was evaluated in different experimental conditions (pH, temperature). A significant reduction in enzyme activity after exposure to chelators of divalent cations (EDTA), reducing agents (DTT), pH less than 5.0 or temperatures higher than 45 °C was observed. BbMP-1 showed activity on fibrinogen degrading Aα chain quickly and to a lesser extent the Bß chain. Also demostrated to be weakly hemorrhagic, presenting however, significant myotoxic and edematogenic activity. The in vitro activity of BbMP-1 against Plasmodium falciparum showed an IC50 of 3.2 ± 2.0 µg/mL. This study may help to understand the pathophysiological effects induced by this group of toxin and their participation in the symptoms observed in cases of snake envenomation. Moreover, this result is representative for this group of proteins and shows the biotechnological potential of BbMP-1 by the demonstration of its antiplasmodial activity.


Asunto(s)
Antiparasitarios/farmacología , Bothrops/metabolismo , Venenos de Crotálidos/enzimología , Metaloproteasas/química , Plasmodium falciparum/efectos de los fármacos , Animales , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Caseínas/química , Caseínas/metabolismo , Electroforesis en Gel de Poliacrilamida , Fibrinógeno/química , Fibrinógeno/metabolismo , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Masculino , Metaloproteasas/aislamiento & purificación , Metaloproteasas/farmacología , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Temperatura
5.
J Nat Prod ; 77(4): 831-41, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24717080

RESUMEN

The skin of many amphibians produces a large repertoire of antimicrobial peptides that are crucial in the first line of defense against microbial invasion. Despite the immense richness of wild amphibians in Argentina, knowledge about peptides with antimicrobial properties is limited to a few species. Here we used LC-MS-MS to analyze samples of Hypsiboas pulchellus skin with the aim to identify antimicrobial peptides in the mass range of 1000 to 2000 Da. Twenty-three novel sequences were identified by MS, three of which were selected for chemical synthesis and further studies. The three synthetic peptides, named P1-Hp-1971, P2-Hp-1935, and P3-Hp-1891, inhibited the growth of two ATCC strains: Escherichia coli (MIC: 16, 33, and 17 µM, respectively) and Staphylococcus aureus (MIC: 8, 66, and 17 µM, respectively). P1-Hp-1971 and P3-Hp-1891 were the most active peptides. P1-Hp-1971, which showed the highest therapeutic indices (40 for E. coli and 80 for S. aureus), is a proline-glycine-rich peptide with a highly unordered structure, while P3-Hp-1891 adopts an amphipathic α-helical structure in the presence of 2,2,2-trifluoroethanol and anionic liposomes. This is the first peptidomic study of Hypsiboas pulchellus skin secretions to allow the identification of antimicrobial peptides.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Anuros , Piel/metabolismo , Secuencia de Aminoácidos , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Argentina , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos
6.
Biomed Res Int ; 2014: 595186, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24719874

RESUMEN

This paper presents a novel serine protease (SP) isolated from Bothrops pirajai, a venomous snake found solely in Brazil that belongs to the Viperidae family. The identified SP, named BpirSP-39, was isolated by three chromatographic steps (size exclusion, bioaffinity, and reverse phase chromatographies). The molecular mass of BpirSP-39 was estimated by SDS-PAGE and confirmed by mass spectrometry (39,408.32 Da). The protein was able to form fibrin networks, which was not observed in the presence of serine protease inhibitors, such as phenylmethylsulfonyl fluoride (PMSF). Furthermore, BpirSP-39 presented considerable thermal stability and was apparently able to activate factor XIII of the blood coagulation cascade, unlike most serine proteases. BpirSP-39 was capable of hydrolyzing different chromogenic substrates tested (S-2222, S-2302, and S-2238) while Cu(2+) significantly diminished BspirSP-39 activity on the three tested substrates. The enzyme promoted platelet aggregation and also exhibited fibrinogenolytic, fibrinolytic, gelatinolytic, and amidolytic activities. The multiple alignment showed high sequence similarity to other thrombin-like enzymes from snake venoms. These results allow us to conclude that a new SP was isolated from Bothrops pirajai snake venom.


Asunto(s)
Venenos de Crotálidos , Factor VIII/química , Fibrinólisis , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Animales , Bothrops , Humanos , Peso Molecular , Fluoruro de Fenilmetilsulfonilo/química , Inhibidores de Serina Proteinasa/química
7.
Bioorg Chem ; 39(2): 101-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21353284

RESUMEN

The use of very highly substituted resins has been avoided for peptide synthesis due to the aggravation of chain-chain interactions within beads. To better evaluate this problem, a combined solvation-peptide synthesis approach was herein developed taking as models, several peptide-resins and with peptide contents values increasing up to near 85%. Influence of peptide sequence and loading to solvation characteristics of these compounds was observed. Moreover, chain-chain distance and chain concentration within the bead were also calculated in different loaded conditions. Of note, a severe shrinking of beads occurred during the α-amine deprotonation step only when in heavily loaded resins, thus suggesting the need for the modification of the solvent system at this step. Finally, the yields of different syntheses in low and heavily loaded conditions were comparable, thus indicating the feasibility of applying this latter "prohibitive" chemical synthesis protocol. We thought these results might be basically credited to the possibility, without the need of increasing molar excess of reactants, of carrying out the coupling reaction in higher concentration of reactants - near three to seven folds - favored by the use of smaller amount of resin. Additionally, the alteration in the solvent system at the α-amine deprotonation step might be also improving the peptide synthesis when in heavily loaded experimental protocol.


Asunto(s)
Péptidos/síntesis química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Péptidos/química , Resinas Sintéticas/química , Solventes/química
8.
J Comb Chem ; 11(1): 146-50, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19072229

RESUMEN

To screen one-bead-one-compound (OBOC) combinatorial libraries, tens of thousands to millions of compound beads are first mixed with a target molecule. The beads that interact with this molecule are then identified and isolated for compound structure determination. Here we describe an OBOC peptide library screening using streptavidin (SA) as probe protein, labeled with a red fluorescent dye and using the COPAS BIO-BEAD flow sorting equipment to separate fluorescent from nonfluorescent beads. The red dyes used were ATTO 590 and Texas Red. After incubating the library with the SA-red fluorescent dye conjugate, we isolated positive beads caused by peptide-SA interaction and false positive beads produced by peptide fluorescent dye interaction. These false positives were a drawback when sorting beads by COPAS. However,an in depth analysis of both kinds of beads allowed the differentiation of positives from false positives. The false positive beads showed bright homogeneous fluorescence, while positive beads had a heterogeneous fluorescence, exhibiting a characteristic halo appearance, with fluorescence intensity greatest at the bead surface and lowest in the core. The difference was more evident when using Texas Red instead of ATTO 590. Thus, positive beads could be manually separated from false positive ones. The beads were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Most of the sequences obtained from positive beads had the His-Pro-Gln motif. Peptides from false positive beads were rich in Leu/Ileu, His, Phe, and Tyr.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Biblioteca de Péptidos , Evaluación Preclínica de Medicamentos/métodos , Colorantes Fluorescentes , Microesferas
9.
FEBS Lett ; 565(1-3): 171-5, 2004 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-15135074

RESUMEN

The cationic peptide tritrpticin (VRRFPWWWPFLRR, Trp3) has a broad action spectrum, acting against Gram-positive and Gram-negative bacteria, as well as some fungi, while also displaying hemolytic activity. We have studied the behavior of Trp3 in planar lipid bilayers (or black lipid membrane - BLM) and were able to demonstrate its ion channel-like activity. Channel-like activity was observed in negatively charged azolectin BLM as a sudden appearance of discrete current fluctuations upon application of a constant voltage across the membrane. Trp3 formed large conductance channels (500-2000 pS) both at positive and negative potentials. In azolectin bilayers, the predominant ion-channel activity was characterized by very regular and discrete current steps (corresponding to openings) of uniform amplitude, which exhibited relatively long residence times (of the order of seconds). Occasionally, multiple conductance steps were observed, indicating the simultaneous presence of more than one open pore. In bilayers of zwitterionic diphytanoylphosphatidyl choline (DPhPC) Trp3 also showed ion-channel activity, but in a much less frequent and less prominent way. Studies of ion selectivity indicated that Trp3 forms a cation-selective channel. These results should contribute to the understanding of the molecular interactions and mechanism of action of Trp3 in lipid bilayers and biological membranes.


Asunto(s)
Antibacterianos/farmacología , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/química , Oligopéptidos/farmacología , Canales de Calcio/química , Cationes , Membrana Celular/metabolismo , Electrofisiología , Iones , Membrana Dobles de Lípidos/metabolismo , Lípidos/química , Modelos Químicos , Péptidos/química , Fosfatidilcolinas/química , Fosfolípidos/química , Canales Catiónicos TRPC
11.
J Org Chem ; 61(25): 8992-9000, 1996 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-11667883

RESUMEN

The solvation properties of model resin and peptide-resins measured in ca. 30 solvent systems correlated better with the sum of solvent electron acceptor (AN) and electron donor (DN) numbers, in 1:1 proportion, than with other solvent polarity parameters. The high sensitivity of the (AN+DN) term to detect differentiated solvation behaviors of peptide-resins, taken as model of heterogeneous and complex solutes, seems to be in agreement with the previously proposed two-parameter model, where the sum of the Lewis acidity and Lewis basicity characters of solvent are proposed for scaling solvent effect. Besides these physicochemical aspects regarding solute-solvent interactions, important implications of this study for the solid phase peptide synthesis were also observed. Each class of peptide-resin displayed a specific solvation profile that was dependent on the amount and the nature of the resin-bound peptide sequence. Plots of resin swelling versus solvent (AN+DN) values allowed the visualization of a maximum solvation region characteristic for each class of resin. This strategy facilitates the selection of solvent systems for optimal solvation conditions of peptide chains in every step of the entire synthesis cycle. Moreover, only the AN and DN concepts allow the understanding of rules for solvation/shrinking of peptide-resins when in homogeneous or in heterogeneous mixed solvents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA