Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomater Sci Polym Ed ; 33(5): 627-650, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34807809

RESUMEN

Cellulose nanofibers (CNFs) are natural polymers with physical-chemical properties that make them very attractive for modulating stem cell differentiation, a crucial step in tissue engineering and regenerative medicine. Although cellulose is cytocompatible, when materials are in nanoscale, they become more reactive, needing to evaluate its potential toxic effect to ensure safe application. This study aimed to investigate the cytocompatibility of cotton CNF and its differentiation capacity induction on stem cells from human exfoliated deciduous teeth. First, the cotton CNF was characterized. Then, the cytocompatibility and the osteogenic differentiation induced by cotton CNF were examined. The results revealed that cotton CNFs have about 6-18 nm diameters, and the zeta potential was -10 mV. Despite gene expression alteration, the cotton CNF shows good cytocompatibility. The cotton CNF induced an increase in phosphatase alkaline activity and extracellular matrix mineralization. The results indicate that cotton CNF has good cytocompatibility and can promote cell differentiation without using chemical inducers, showing great potential as a new differentiation inductor for tissue engineering and regenerative medicine applications.


Asunto(s)
Nanofibras , Osteogénesis , Diferenciación Celular , Celulosa/farmacología , Humanos , Nanofibras/química , Medicina Regenerativa , Células Madre , Ingeniería de Tejidos , Diente Primario
2.
Nanotechnology ; 33(6)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34700304

RESUMEN

Carboxylated multi-wall carbon nanotube (MWCNT-COOH) presents unique properties due to nanoscale dimensions and permits a broad range of applications in different fields, such as bone tissue engineering and regenerative medicine. However, the cytocompatibility of MWCNT-COOH with human stem cells is poorly understood. Thus, studies elucidating how MWCNT-COOH affects human stem cell viability are essential to a safer application of nanotechnologies. Using stem cells from the human exfoliated deciduous teeth model, we have evaluated the effects of MWCNT-COOH on cell viability, oxidative cell stress, and DNA integrity. Results demonstrated that despite the decreased metabolism of mitochondria, MWCNT-COOH had no toxicity against stem cells. Cells maintained viability after MWCNT-COOH exposure. MWCNT-COOH did not alter the superoxide dismutase activity and did not cause genotoxic effects. The present findings are relevant to the potential application of MWCNT-COOH in the tissue engineering and regenerative medicine fields.


Asunto(s)
Nanomedicina , Nanotubos de Carbono/toxicidad , Células Madre , Ingeniería de Tejidos , Diente Primario/citología , Ácidos Carboxílicos/toxicidad , Supervivencia Celular/efectos de los fármacos , Humanos , Células Madre/citología , Células Madre/efectos de los fármacos
3.
Toxicol Res (Camb) ; 10(3): 511-522, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34141165

RESUMEN

The titanium dioxide nanoparticles (NPs) have been applied to biomedical, pharmaceutical, and food additive fields. However, the effect on health and the environment are conflicting; thus, it has been reviewing several times. In this context, establishing standard robust protocols for detecting cytotoxicity and genotoxicity of nanomaterials became essential for nanotechnology development. The cell type and the intrinsic characteristics of titanium dioxide NPs can influence nanotoxicity. In this work, the cyto- and genotoxicity effects of standard reference material titanium dioxide NPs in primary bovine fibroblasts and immortalized Chinese hamster ovary epithelial (CHO) cells were determined and compared for the first time. Titanium dioxide NPs exposure revealed no cytotoxicity for primary bovine fibroblasts, while only higher concentrations tested (10 µg/ml) induce genotoxic effects in this cell model. In contrast, the lower concentrations of the titanium dioxide NPs cause the cyto- and genotoxic effects in CHO cells. Therefore, our finding indicates that the CHO line was more sensitive toward the effects of titanium dioxide NPs than the primary bovine fibroblast, which should be valuable for their environmental risk assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA