Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Isotopes Environ Health Stud ; : 1-16, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246103

RESUMEN

The addition of Navicula sp. to shrimp nurseries can improve the growth of Penaeus vannamei reared in biofloc systems. However, the contribution of microalgae to the biofloc formation and the effective contribution to shrimp nutrition remain unknown. In this study, Navicula sp. was added to biofloc nursery systems of P. vannamei at distinct time frequencies for evaluating its nutritional contribution to shrimp growth. Nursery rearing was carried out in bioflocs for 35 days at a stocking density of 3000 post-larvae m-3. Shrimp were fed using a commercial feed plus fresh culture of Navicula sp. at different frequencies: no addition of Navicula sp. (WN - control), the addition of 10 × 104 cells mL-1 of the diatom every 5, 10 and 15 days (N5, N10 and N15, respectively). Food sources relative contribution to P. vannamei development was estimated using a Bayesian mixture model. The isotopic discrimination factor (Δ15N and Δ13C) for each food source was determined experimentally. After 35 days of culture, survival (∼93 %) was similar across all treatments but there was a significant difference in weight gain and feed conversion ratio. The N10 treatment (0.50 ± 0.05 g, 0.99 ± 0.01) exhibited better growth parameters when compared to the WN treatment (0.33 ± 0.07 g, 11.46 ± 0.30). Biofloc was the food source most assimilated by shrimp followed by Navicula sp. and commercial feed. Contribution of Navicula sp. was higher in the N5 treatment. In the treatments with diatom addition, an inverse correlation was observed between the relative contributions of biofloc and Navicula sp., indicating that Navicula sp. is not in the biofloc composition, but it is directly consumed by P. vannamei post-larvae. Biofloc and Navicula sp. exhibited larger contributions to the growth of shrimp, reinforcing the importance of natural food sources to the aquaculture of P. vannamei post-larvae.

2.
Microorganisms ; 12(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39203439

RESUMEN

The aquaculture industry requires green solutions to solve several environmental challenges, including adequate wastewater remediation and natural drug applications to treat bacteria- and virus-related diseases. This study investigated the feasibility of cultivating the dinoflagellate Durusdinium glynnii in aquaculture wastewater from shrimp rearing in a synbiotic system (AWW-SS), with different dilutions of f/2 medium (FM). Interestingly, D. glynnii demonstrated enhanced growth in all AWW-SS treatments compared to the control (FM). The highest growth rates were achieved at AWW-SS:FM dilutions of 75:25 and 50:50. The removal of total nitrogen and total phosphorus reached 50.1 and 71.7%, respectively, of the crude AWW-SS. Biomass extracts of D. glynnii grown with AWW-SS were able to inhibit the growth of the bacteria Vibrio parahaemolyticus (inhibition zone of 10.0 ± 1.7 mm) and V. vulnificus (inhibition zone of 11.7 ± 1.5 mm). The presented results demonstrate that the dinoflagellate D. glynnii is a potential candidate for the development of circularity for sustainable aquaculture production, particularly by producing anti-Vibrio compounds at a near-zero cost.

3.
Bioprocess Biosyst Eng ; 47(3): 367-380, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407617

RESUMEN

In this study, the effects of CO2 addition on the growth performance and biochemical composition of the green microalga Tetradesmus obliquus cultured in a hybrid algal production system (HAPS) were investigated. The HAPS combines the characteristics of tubular photobioreactors (towards a better carbon dioxide dissolution coefficient) with thin-layer cascade system (with a higher surface-to-volume ratio). Experimental batches were conducted with and without CO2 addition, and evaluated in terms of productivity and biomass characteristics (elemental composition, protein and lipid contents, pigments and fatty acids profiles). CO2 enrichment positively influenced productivity, and proteins, lipids, pigments and unsaturated fatty acids contents in biomass. The HAPS herein presented contributes to the optimization of microalgae cultures in open systems, since it allows, with a simple adaptation-a transit of the cultivation through a tubular portion where injection and dissolution of CO2 is efficient-to obtain in TLC systems, greater productivity and better-quality biomass.


Asunto(s)
Chlorophyceae , Microalgas , Fotobiorreactores , Biomasa , Dióxido de Carbono/metabolismo , Ácidos Grasos/metabolismo
4.
Environ Monit Assess ; 195(11): 1384, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889346

RESUMEN

This review aims to perform an updated bibliographical survey on the cultivation of microalgae in domestic wastewater with a focus on biotechnological aspects. It was verified that the largest number of researches developed was about cultures in microalgae-bacteria consortium and mixed cultures of microalgae, followed by researches referring to the species Chlorella vulgaris and to the family Scenedesmaceae. According to published studies, these microorganisms are efficient in the biological treatment of domestic wastewater, as well as in the production of high value-added biomass, as they are capable of biosorbing the organic and inorganic compounds present in the culture medium, thus generating cells with high levels of lipids, proteins, and carbohydrates. These compounds are of great importance for different industry sectors, such as pharmaceuticals, food, and also for agriculture and aquaculture. In addition, biomolecules produced by microalgae can be extracted for several biotechnological applications; however, most studies focus on the production of biofuels, with biodiesel being the main one. There are also other emerging applications that still require more in-depth research, such as the use of biomass as a biofertilizer and biostimulant in the production of bioplastic. Therefore, it is concluded that the cultivation of microalgae in domestic wastewater is a sustainable way to promote effluent bioremediation and produce valuable biomass for the biobased industry, contributing to the development of technology for the green economy.


Asunto(s)
Chlorella vulgaris , Microalgas , Aguas Residuales , Biomasa , Biodegradación Ambiental , Monitoreo del Ambiente , Biocombustibles
5.
J Basic Microbiol ; 63(12): 1440-1450, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596061

RESUMEN

The present study shows the characterization of the bacterial communities associated with different systems during the cultivation of the microalga Tetradesmus obliquus. For that, sequential cultivation was performed in three different systems: (1) Photobioreactor bench-scale; (2) flat-panel photobioreactor; and (3) thin-layer cascade. Cultures were monitored daily for growth parameters and biomass samples were collected for characterization of bacterial communities using metagenomic. A total of 195,177 reads were produced, resulting in the identification of 72 OTUs. In the grouping of bacterial communities, 3 phyla, 6 classes, 28 families, and 35 taxa were found. The bacteria Brevundimonas and Porphyrobacter had a higher relative abundance compared with other taxa found. These taxa were present in all cultivation systems forming a possible core community. Bacterial communities associated with different cultivation systems of the microalga T. obliquus showed an increase in taxa richness and diversity in the super-intensive and intensive systems.


Asunto(s)
Chlorophyceae , Microalgas , Humanos , Bacterias/genética , Biomasa
6.
Environ Sci Pollut Res Int ; 30(34): 82142-82151, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37322400

RESUMEN

Endosymbiotic dinoflagellates provide the nutritional basis for marine invertebrates, especially reef-building corals. These dinoflagellates are sensitive to environmental changes, and understanding the factors that can increase the resistance of the symbionts is crucial for the elucidation of the mechanisms involved with coral bleaching. Here, we demonstrate how the endosymbiotic dinoflagellate Durusdinium glynnii is affected by concentration (1760 vs 440 µM) and source (sodium nitrate vs urea) of nitrogen after light and thermal stress exposure. The effectiveness in the use of the two nitrogen forms was proven by the nitrogen isotopic signature. Overall, high nitrogen concentrations, regardless of source, increased D. glynnii growth, chlorophyll-a, and peridinin levels. During the pre-stress period, the use of urea accelerated the growth of D. glynnii compared to cells grown using sodium nitrate. During the luminous stress, high nitrate conditions increased cell growth, but no changes in pigments composition was observed. On the other hand, during thermal stress, a steep and steady decline in cell densities over time was observed, except for high urea condition, where there is cellular division and peridinin accumulation 72 h after the thermal shock. Our findings suggest peridinin has a protective role during the thermal stress, and the uptake of urea by D. glynnii can alleviate thermal stress responses, eventually mitigating coral bleaching events.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Dinoflagelados/fisiología , Nitrógeno , Antozoos/fisiología , Simbiosis , Arrecifes de Coral
7.
Appl Microbiol Biotechnol ; 106(18): 6263-6276, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35972515

RESUMEN

Peridinin is a light-harvesting carotenoid present in phototrophic dinoflagellates and has great potential for new drug applications and cosmetics development. Herein, the effects of irradiance mediated by light-emitting diodes on growth performance, carotenoid and fatty acid profiles, and antioxidant activity of the endosymbiotic dinoflagellate Durusdinium glynnii were investigated. The results demonstrate that D. glynnii is particularly well adapted to low-light conditions; however, it can be high-light-tolerant. In contrast to other light-harvesting carotenoids, the peridinin accumulation in D. glynnii occurred during high-light exposure. The peridinin to chlorophyll-a ratio varied as a function of irradiance, while the peridinin to total carotenoids ratio remained stable. Under optimal irradiance for growth, there was a peak in docosahexaenoic acid (DHA) bioaccumulation. This study contributes to the understanding of the photoprotective role of peridinin in endosymbiont dinoflagellates and highlights the antioxidant activity of peridinin-rich extracts. KEY POINTS: • Peridinin has a protective role against chlorophyll photo-oxidation • High light conditions induce cellular peridinin accumulation • D. glynnii accumulates high amounts of DHA under optimal light supply.


Asunto(s)
Dinoflagelados , Antioxidantes , Carotenoides , Clorofila , Ácidos Docosahexaenoicos
8.
Sci Total Environ ; 841: 156795, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35732235

RESUMEN

Flocculation has been proved an efficient method for microalgal biomass harvesting, but some coagulant agents may have adverse effects on microalgae growth, making the reuse of the medium unfeasible. In this study, Haematococcus pluvialis was harvested by different flocculants, and the feasibility of the reuse of the culture medium was evaluated. Results suggested that both inorganics, polyaluminum chloride (PA) and ferric chloride (FC), and organics, extracted from Moringa oleifera seed (MSE) and chitosan (CH) resulted in efficient flocculation - flocculation efficiency above 99 %. However, using PA and FC had adverse effects on the astaxanthin recovery from haematocysts - losses of 58.6 and 73.5 %, respectively. Bioflocculants in the reused medium also had higher growth performance than inorganic ones. Furthermore, bioflocculants in reused medium increase the contents of ß-carotene, astaxanthin, and linolenic acid. This investigation demonstrated that using MSE and CHI for harvesting H. pluvialis enables the water reusability from a flocculated medium.


Asunto(s)
Chlorophyceae , Microalgas , Biomasa , Floculación , Agua , Xantófilas
9.
Prep Biochem Biotechnol ; 52(5): 598-609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34424829

RESUMEN

Astaxanthin is a xanthophyll carotenoid widely used in aquaculture and nutraceutical industries. Among natural sources, the microalga Haematococcus pluvialis is the non-genetically modified organism with the greatest capacity to accumulate astaxanthin. Therefore, it is important to understand emerging strategies in upstream and downstream processing of astaxanthin from this microalga. This review covers all aspects regarding the production and the market of natural astaxanthin from H. pluvialis. Astaxanthin biosynthesis, metabolic pathways, and nutritional metabolisms from the green vegetative motile to red hematocyst stage were reviewed in detail. Also, traditional and emerging techniques on biomass harvesting and astaxanthin recovery were presented and evaluated. Moreover, the global market of astaxanthin was discussed, and guidelines for sustainability increasing of the production chain of astaxanthin from H. pluvialis were highlighted, based on biorefinery models. This review can serve as a baseline on the current knowledge of H. pluvialis and encourage new researchers to enter this field of research.


Asunto(s)
Chlorophyceae , Microalgas , Biomasa , Microalgas/metabolismo , Xantófilas
10.
PLoS One ; 16(8): e0255996, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34370788

RESUMEN

Recent advances in microalgae biotechnology have proven that these microorganisms contain a number of bioactive molecules, that can be used as food additives that help prevent disease. The green microalga Chlorella vulgaris presents several biomolecules, such as lutein and astaxanthin, with antioxidant capacity, which can play a protective role in tissues. In this study, we produced and analyzed a C. vulgaris functional alcoholic beverage (produced using a traditional Brazilian alcoholic beverage, cachaça, and C. vulgaris biomass). Assays were conducted in vitro by radical scavenging tests, and in vivo, by modeling cortical spreading depression in rat brains. Scavenging radical assays showed that consumption of the C. vulgaris alcoholic beverage had a DPPH inhibition of 77.2%. This functional alcoholic beverage at a concentration of 12.5 g L-1 significantly improved cortical spreading depression velocity in the rat brains (2.89 mm min-1), when compared with cachaça alone (3.68 mm min-1) and control (distilled water; 3.25 mm min-1). Moreover, animals that consumed the functional beverage gained less weight than those that consumed just alcohol and the control groups. These findings suggest that the C. vulgaris functional alcoholic beverage plays a protective physiologic role in protecting brain cells from the effects of drinking ethanol.


Asunto(s)
Bebidas Alcohólicas/análisis , Antioxidantes/farmacología , Peso Corporal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Chlorella vulgaris/fisiología , Depresión de Propagación Cortical/efectos de los fármacos , Animales , Brasil , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA