RESUMEN
SMA actuators are a group of lightweight actuators that offer advantages over conventional technology and allow for simple and compact solutions to the increasing demand for electrical actuation. In particular, an increasing number of SMA torsional actuator applications have been published recently due to their ability to supply rotational motion under load, resulting in advantages such as module simplification and the reduction of overall product weight. This paper presents the conceptual design, operating principle, experimental characterization and working performance of torsional actuators applicable in active rudder in aeronautics. The proposed application comprises a pair of SMA torsion springs, which bi-directionally actuate the actuator by Joule heating and natural cooling. The experimental results confirm the functionality of the torsion springs actuated device and show the rotation angle of the developed active rudder was about 30° at a heating current of 5 A. After the design and experiment, one of their chief drawbacks is their relatively slow operating speed in rudder positioning, but this can be improved by control strategy and small modifications to the actuator mechanism described in this work.
RESUMEN
This work presents an experimental study related to the mechanical performance of a special design spring fabricated with a superelastic shape memory alloy (SMA-SE). For the experimental testing, the spring was coupled in a rotor machine, aiming to attenuate the mechanical vibration when the system went through a natural frequency without any external power source. It was verified that the reduction in instabilities stemmed from the better distribution of vibration force in the proposed device, as well as the damping capacity of the spring material. These findings showed that the application of the M-Shape device of SMA-SE for three different cases could reduce vibration up to 23 dB when compared to the situations without, and with, 1.5 mm of preload. The M-Shape device was shown to be efficient in reducing the mechanical vibration in a rotor system. This was due to the damping capacity of the SMA-SE material, and because the application did not require any external source of energy to generate phase transformation.