RESUMEN
Two analytical methods for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry without prior sample digestion have been compared: direct solid sampling analysis (SS) and slurry sampling (SlS). Besides the conventional modifier mixture of palladium and magnesium nitrates (10 microg Pd+3 microg Mg), 0.05% (v/v) Triton X-100 has been added to improve the penetration of the modifier solution into the solid sample, and 0.1% H(2)O(2) in order to promote an in situ digestion for SS. For SlS, 30 microg Pd, 12 microg Mg and 0.05% (v/v) Triton X-100 have been used as the modifier mixture. Under these conditions, and using a pyrolysis temperature of 800 degrees C, essentially no background absorption was observed with an atomization temperature of 1600 degrees C. About 2 mg of sample have been typically used for SS, although as much as 3-5 mg could have been introduced. In the case of SlS multiple injections had to be used to achieve the sensitivity required for this determination. Calibration against aqueous standards was feasible for both methods. The characteristic mass obtained with SS was 0.6 pg, and that with SlS was 1.0 pg. The limits of detection were 0.4 and 0.7 ng g(-1), the limits of quantification were 1.3 and 2.3 ng g(-1) and the relative standard deviation (n=5) was 6-16% and 9-23% for SS and SlS, respectively. The accuracy was confirmed by the analysis of certified reference materials. The two methods were applied for the determination of cadmium in six wheat flour samples acquired in supermarkets of different Brazilian cities. The cadmium content varied between 8.9+/-0.5 and 13+/-2 ng g(-1) (n=5). Direct SS gave results similar to those obtained with SlS using multi-injections; the values of both techniques showed no statistically significant difference at the 95% confidence level. Direct SS was finally adopted as the method of choice, due to its greater simplicity, the faster speed of analysis and the better figures of merit.
Asunto(s)
Cadmio/análisis , Electrones , Harina/análisis , Espectrofotometría Atómica/métodos , Temperatura , Triticum/químicaRESUMEN
A method has been developed for the determination of cobalt, copper and manganese in green coffee using direct solid sampling electrothermal atomic absorption spectrometry (SS-ET AAS). The motivation for the study was that only a few elements might be suitable to determine the origin of green coffee so that the multi-element techniques usually applied for this purpose might not be necessary. The three elements have been chosen as test elements as they were found to be significant in previous investigations. A number of botanical certified reference materials (CRM) and pre-analyzed samples of green coffee have been used for method validation, and inductively coupled plasma optical emission spectrometry (ICP OES) after microwave-assisted acid digestion of the samples as reference method. Calibration against aqueous standards could be used for the determination of Mn and Co by SS-ET AAS, but calibration against solid CRM was necessary for the determination of Cu. No significant difference was found between the results obtained with the proposed method and certified or independently determined values. The limits of detection for Mn, Cu and Co were 0.012, 0.006 and 0.004mugg(-1) using SS-ET AAS and 0.015, 0.13 and 0.10mugg(-1) using ICP OES. Seven samples of Brazilian green coffee have been analyzed, and there was no significant difference between the values obtained with SS-ET AAS and ICP OES for Mn and Cu. ICP OES could not be used as a reference method for Co, as essentially all values were below the limit of quantification of this technique.