Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 33(6): 2305-2313, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37036628

RESUMEN

Photochemistry related studies have been driven by with the application of new types of photocatalysis. Lately boron-dipyrromethene (BODIPY) as distinguished chromophore with exceptional photophysical and chemical features has emerged as a viable photosensitizer. Within this context, three new NDI-BODIPY triads (8-10) were synthesized/ characterized and used to investigate the efficiencies of singlet oxygen generation and oxidation of 1,5-dihydroxynapthalene to juglone under visible light. Singlet oxygen generation was determined both via indirect method by using 1,3-diphenylisobenzofuran as trap molecule and from the characteristic 1O2 phosphorescence at 1270 nm. Also, NDI with BODIPY dyes bearing bromine and iodine atoms were shown to be highly active photocatalysts in which the activities are comparable or higher to the readily available commercial systems where 36% (9) and 66% (10) juglone production was achieved under 15 min. This work may emphasize good example of applying NDI-BODIPY based triads as photocatalysts for a series of important organic transformations.

2.
ACS Omega ; 8(9): 8320-8331, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910926

RESUMEN

Three multifunctional targeted NI-BODIPYs (10-12) and GO-(10-12) nanocarriers were fabricated. NI-BODIPYs are designed to facilitate non-covalent interaction with graphene oxide (GO) and target toward cancer cells for specific recognition with glucose moieties while efficiently producing singlet oxygen. We probed detailed characterization, fundamental photophysical/photochemical properties, and interactions with GO of such triplet photosensitizers and nanocarriers. The effect of the formation of nanohybrids with GO on singlet oxygen formation as well as on the efficacies of the molecules in terms of in vitro killing of cancer cells was evaluated with K562 human chronic myelogenous leukemia cells. Amazingly, it was observed that GO exhibited favorable interactions with the NI-BODIPY dyads and promoted the formation of singlet oxygen, while not showing any dark toxicity.

3.
Dalton Trans ; 52(17): 5466-5477, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36880343

RESUMEN

The properties of graphene oxide (GO) have received much attention and been applied to the exploration of potential applications in disease-related diagnostics and non-invasive therapy. One application, photodynamic therapy (PDT), involves the killing of cancer cells where singlet oxygen is generated with light irradiation of the appropriate wavelength. In this work, three new BODIPY derivatives (13-15), decorated with carbohydrate moieties for active targeting and branched ethylene glycol for biocompatibility, and their GO based nanocarriers were designed to study the singlet oxygen production and PDT efficiency. First, BODIPYs were prepared, followed by the fabrication of GO layers with BODIPY dyes via a non-covalent method. Detailed characterizations of the materials were carried out with mass spectrometry, FT-IR spectroscopy, 1H NMR, 13C NMR, elemental analysis, Raman spectroscopies, EDX analysis and TEM and AFM microscopies. The efficiency of singlet oxygen generation in organic and water-based solutions was determined by photobleaching with 1,3-diphenylisobenzofuran (DPBF) and 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA), respectively. The results in in vitro PDT analysis against K562 human cancer cells indicate the prepared materials are highly promising in PDT anticancer therapy and the IC50 values of GO loaded BODIPY derivatives bearing heavy atoms, GO-14 and GO-15, were calculated as 40.59 nM and 39.21 nM, respectively.


Asunto(s)
Nanocompuestos , Fotoquimioterapia , Humanos , Oxígeno Singlete/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanocompuestos/química , Glicoles de Etileno , Fármacos Fotosensibilizantes/química
4.
ChemMedChem ; 17(6): e202100693, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-34859597

RESUMEN

Nanotheranostic tailor-made carriers are potent platforms for the treatment of cancer that propound a number of advantages over conventional agents for photodynamic therapy (PDT). Herein, four new heavy atom free amphiphilic glucose-BODIPY-fullerene dyads (14-17) endowed with carbohydrate units in the styryl units, which can also form nanomicelles (14-17NM) with Tween 80 for PDT are reported. Glucose-BODIPY-fullerene systems (14-17) and related nanomicelles (14-17NM) have been prepared to emcee efficient singlet oxygen generation upon light irradiation. In vitro anti-tumor effects of the compounds 14-17 and 14-17NM in the presence of light and in darkness have been investigated with K562 human chronic myelogenous leukemia suspension cells. Anti-tumor toxicity upon light irradiation was due to the formation of singlet oxygen and reactive oxygen species (ROS). This study may provide an accomplished example of efficient PDT applications based on nanovehicles fabricated with universal spin converter, fullerene, light harvesting unit, BODIPY dyes conjugated with targeting units to fight against cancer.


Asunto(s)
Fulerenos , Neoplasias , Fotoquimioterapia , Compuestos de Boro , Fulerenos/farmacología , Fulerenos/uso terapéutico , Glucosa/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete
5.
Turk J Chem ; 44(1): 74-86, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488144

RESUMEN

Three new 2-component unsubstituted ( 4P ), diiodo- ( 5P ), and dibromo- ( 6P ) distyryl-BODIPY-bridged cyclotriphosphazene dimers were designed and synthesized. The newly synthesized BODIPY-cyclotriphosphazene systems were characterized by 1 H, 13 C, and 31 P NMR spectroscopy. The photophysical properties of the distryl-BODIPYs (4-6) and BODIPY-cyclotriphosphazene dyads ( 4P - 6P ) were studied by UV-Vis absorption and fluorescence emission spectroscopy. In these derivatives, the bino-type cyclotriphosphazene derivative bearing unsubstituted BODIPY unit 4P exhibited high fluorescence and no singlet oxygen generation due to the lack of spin converter. The attachment of heavy atoms (iodine and bromine) enabled the production of singlet oxygen. The bino-type BODIPY-cyclotriphosphazenes ( 5P and 6P ) were also used as triplet photosensitizers in the photooxidation of 1,3-diphenylisobenzofuran to endoperoxide via generation of the singlet oxygen in dichloromethane. The singlet oxygen production of these compounds was also investigated via a direct method and produced a singlet oxygen phosphorescence peak at 1270 nm.

6.
J Fluoresc ; 29(5): 1143-1152, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31407124

RESUMEN

In the present work, novel water-soluble cyclotriphosphazene derivatives (3b and 4b) were synthesized by 'click' reactions between cyclotriphosphazene derivative with hydrophilic glycol side groups (2) and Bodipy's (3a and 4a). All newly synthesized compounds (2, 3b and 4b) were characterized by fourier-transform infrared (FTIR), mass and NMR spectroscopy techniques and elemental analysis (EA). The photophysical properties of Bodipy substituted novel cyclotriphosphazenes (3a and 4a) were examined via UV-Vis absorption and fluorescence emission spectroscopy inside water and many organic solvents such as acetone, tetrahydrofuran, dichloromethane, dimethyl sulfoxide, etc., and the results were compared with the each other. Graphical Abstract.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117232, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31177003

RESUMEN

Perylenebisimide-cyclotriphosphazene based inorganic-organic system was synthesized by a multistep procedure. The substitution reaction of asymmetric perylenebisimide (PBI) derivative with the hexachloroyclotriphosphazene (trimer) resulted in the formation of fully PBI decorated cyclotriphosphazene (5). The identity of newly synthesized compound (5) was confirmed by using 31P, 1H and 13C NMR spectroscopies and mass spectrometry. The photophysical (UV- Vis absorption, fluorescence emission, fluorescence lifetime and fluorescence quantum yield) and photochemical (the singlet oxygen generation, and photostability) properties of this conjugate were investigated as novel heavy atom free triplet photosensitizer. The singlet oxygen quantum yield of the PBI-cyclotriphosphazene (5) was calculated to be 0.86 which is good for a heavy atom free triplet photosensitizer. These results will add to the development of cyclotriphosphazene based heavy atom free singlet oxygen triplet photosensitizer systems for applications in organic oxygenation reactions.

8.
J Fluoresc ; 26(6): 2333-2343, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27617331

RESUMEN

Colorimetric fluorescent chemosensors 4 and 5 based on mono- and di- styryl borondipyrromethenes (BODIPY) linked methyl malonyl were designed for detection of hemoglobin (HgB). Their sensing behavior toward various analytes (Br-, EDTA, Glucose, CO32-, Fe2+, Fe3+, I-, NO3-, PO43-, SO42-,Cl-, Urea, K+, Mg2+, Na+, NH4+, Zn2+,Ca2+,Cd2+, Li+, Pb2+, Cs2+, Ag+, Mn2+, Cr2+, Ni2+, Hg2+, Al3+) were investigated by fluorescence spectroscopies. Addition of HgB to acetone: water (4:1) solutions of BODIPYs 4 and 5 solutions gave visual color changes, as well as significantly quenched fluorescence emissions, while other analytes induced no or much smaller spectral changes. The sensing method for both BODIPYs 4 and 5 was successfully applied to measure the HgB in human blood with satisfactory results. Spike and recovery tests in human blood samples exhibit good recovery rates for the spiked concentrations close to the limit of detection. It was found that BODIPYs 4 and 5 constituted the HgB selective fluorescent chemosensor (ON-OFF) and the detection limits were calculated to be 1.773 µg. mL-1 and 1. 295 µg.mL-1 respectively.


Asunto(s)
Técnicas Biosensibles/métodos , Compuestos de Boro/química , Colorimetría/métodos , Colorantes Fluorescentes/química , Hemoglobinas/análisis , Espectrometría de Fluorescencia/métodos , Humanos
9.
Dalton Trans ; 40(18): 4959-69, 2011 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-21445437

RESUMEN

Nucleophilic substitution reactions of N(3)P(3)Cl(4)[NH(CH(2))(3)NMe] (1) and N(3)P(3)Cl(4)[NH(CH(2))(3)O] (2) with mono-functional alcohols (methanol, 2,2,2-trifluoroethanol, phenol) and a secondary amine (pyrrolidine) were used to investigate the relationship between the incoming nucleophile and the proportions of products with substituents that are cis or trans to the spiro NH moiety. The reaction products were characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy and the configurational isomers by X-ray crystallography. Six products have been characterised with the substituent cis to the spiro NH group for the alcohol (methanol, phenol) and pyrrolidine derivatives of both compounds 1 and 2, compared to just one derivative with the substituent trans to the spiro NH group, that for the pyrrolidine derivative of compound 2. For each reaction the relative proportions of cis and trans isomers were determined by (31)P NMR measurements of the reaction mixtures. It was found that the reactions of compound 1 with all three alcohols and of compound 2 with methanol lead to exclusive formation of isomers with the substituent cis to the NH moiety, whereas all other reactions lead to mixtures of cis and trans isomers in different ratios under standard reaction conditions. However, when crown ether is included in the reaction medium for the reactions of compound 2 with both 2,2,2-trifluoroethanol and phenol, it is found that only cis isomers are formed. All these results are rationalised in terms of the competition between at least two effects; the cis-directing effect by hydrogen bonding of the incoming nucleophile to the spiro N-H group already present on the cyclophophazene ring and the cis-directing effect of the sodium cation coordinating to the oxygen lone pairs of the P-O moiety of the spiro ring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA