Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399186

RESUMEN

This literature review indicates that the basic microstructure of Ti6Al4V is bimodal, consisting of two phases, namely α + ß, and it occurs after fabrication using conventional methods such as casting, plastic forming or machining processes. The fabrication of components via an additive manufacturing process significantly changes the microstructure and properties of Ti6Al4V. Due to the rapid heat exchange during heat treatment, the bimodal microstructure transforms into a lamellar microstructure, which consists of two phases: α' + ß. Despite the application of optimum printing parameters, 3D printed products exhibit typical surface defects and discontinuities, and in turn, surface finishing using shot peening is recommended. A literature review signalizes that shot peening and electropolishing processes positively impact the corrosion behavior, the mechanical properties and the condition of the surface layer of conventionally manufactured titanium alloy. On the other hand, there is a lack of studies combining shot peening and electropolishing in one hybrid process for additively manufactured titanium alloys, which could synthesize the benefits of both processes. Therefore, this review paper clarifies the effects of shot peening and electropolishing treatment on the properties of both additively and conventionally manufactured Ti6Al4V alloys and shows the effect process on the microstructure and properties of Ti6Al4V titanium alloy.

2.
Materials (Basel) ; 15(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36556806

RESUMEN

Although the application of shot peening facilitates increasing hardness and corrosion resistance of stainless steel, the inappropriate peening parameters result in overestimated hardening and exaggerated surface roughness, which deteriorate the surface morphology and negatively affect the corrosive behavior of treated steel. Therefore it is crucial to select the peening parameters that allow obtaining both high hardness and elevated corrosion resistance. This study aims to determine the effect of X5CrNi18-10 stainless steel samples shot peening on the surface morphology, hardness, and corrosion resistance. Samples were shot peened with a CrNi steel shot, applying 0.3 MPa and 0.4 MPa peening pressures and treatment times of 60 s and 120 s. Roughness analysis and microscopic and SEM-EDS examination were employed to state the effect of peening parameters on the sample's corrosive behavior in a 3.5% NaCl solution. The most promising shot peening parameters for Vickers hardness and electrochemical corrosion resistance were selected. It is revealed that the surface roughness increase has a detrimental effect on the corrosion behavior. Overall, high corrosion resistance and the high hardness of stainless steel samples were noted for the peening pressure of 0.4 MPa and time treatment of 60 s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA