Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 5(10): 1803-1819, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640943

RESUMEN

Amino acid homeostasis is critical for many cellular processes. It is well established that amino acids are compartmentalized using pH gradients generated between organelles and the cytoplasm; however, the dynamics of this partitioning has not been explored. Here we develop a highly sensitive pH reporter and find that the major amino acid storage compartment in Saccharomyces cerevisiae, the lysosome-like vacuole, alkalinizes before cell division and re-acidifies as cells divide. The vacuolar pH dynamics require the uptake of extracellular amino acids and activity of TORC1, the v-ATPase and the cycling of the vacuolar specific lipid phosphatidylinositol 3,5-bisphosphate, which is regulated by the cyclin-dependent kinase Pho85 (CDK5 in mammals). Vacuolar pH regulation enables amino acid sequestration and mobilization from the organelle, which is important for mitochondrial function, ribosome homeostasis and cell size control. Collectively, our data provide a new paradigm for the use of dynamic pH-dependent amino acid compartmentalization during cell growth/division.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vacuolas , Animales , Vacuolas/química , Vacuolas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homeostasis , Aminoácidos/metabolismo , División Celular , Ciclo Celular , Concentración de Iones de Hidrógeno , Mamíferos/metabolismo
2.
Elife ; 82019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31172943

RESUMEN

Tail-anchored (TA) proteins insert post-translationally into the endoplasmic reticulum (ER), the outer mitochondrial membrane (OMM) and peroxisomes. Whereas the GET pathway controls ER-targeting, no dedicated factors are known for OMM insertion, posing the question of how accuracy is achieved. The mitochondrial AAA-ATPase Msp1 removes mislocalized TA proteins from the OMM, but it is unclear, how Msp1 clients are targeted for degradation. Here we screened for factors involved in degradation of TA proteins mislocalized to mitochondria. We show that the ER-associated degradation (ERAD) E3 ubiquitin ligase Doa10 controls cytoplasmic level of Msp1 clients. Furthermore, we identified the uncharacterized OMM protein Fmp32 and the ectopically expressed subunit of the ER-mitochondria encounter structure (ERMES) complex Gem1 as native clients for Msp1 and Doa10. We propose that productive localization of TA proteins to the OMM is ensured by complex assembly, while orphan subunits are extracted by Msp1 and eventually degraded by Doa10.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Anión/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Elife ; 72018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985129

RESUMEN

The endoplasmic reticulum (ER) protein folding capacity is balanced with the protein folding burden to prevent accumulation of un- or misfolded proteins. The ER membrane-resident kinase/RNase Ire1 maintains ER protein homeostasis through two fundamentally distinct processes. First, Ire1 can initiate a transcriptional response through a non-conventional mRNA splicing reaction to increase the ER folding capacity. Second, Ire1 can decrease the ER folding burden through selective mRNA decay. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, the two Ire1 functions have been evolutionarily separated. Here, we show that the respective Ire1 orthologs have become specialized for their functional outputs by divergence of their RNase specificities. In addition, RNA structural features separate the splicing substrates from the decay substrates. Using these insights, we engineered an S. pombe Ire1 cleavage substrate into a splicing substrate, which confers S. pombe with both Ire1 functional outputs.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Ingeniería Genética , Empalme del ARN/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Secuencia de Bases , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Conformación de Ácido Nucleico , Dominios Proteicos , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidad por Sustrato
4.
Elife ; 52016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27925580

RESUMEN

Accurate protein localization is crucial to generate and maintain organization in all cells. Achieving accuracy is challenging, as the molecular signals that dictate a protein's cellular destination are often promiscuous. A salient example is the targeting of an essential class of tail-anchored (TA) proteins, whose sole defining feature is a transmembrane domain near their C-terminus. Here we show that the Guided Entry of Tail-anchored protein (GET) pathway selects TA proteins destined to the endoplasmic reticulum (ER) utilizing distinct molecular steps, including differential binding by the co-chaperone Sgt2 and kinetic proofreading after ATP hydrolysis by the targeting factor Get3. Further, the different steps select for distinct physicochemical features of the TA substrate. The use of multiple selection filters may be general to protein biogenesis pathways that must distinguish correct and incorrect substrates based on minor differences.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Portadoras/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hidrólisis , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(9): E947-56, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730886

RESUMEN

Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin-dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos , ADN Mitocondrial , Genoma Mitocondrial/fisiología , Dinámicas Mitocondriales/fisiología , Saccharomyces cerevisiae/fisiología , Actinas/genética , Actinas/metabolismo , Ciclo Celular , ADN de Hongos/biosíntesis , ADN de Hongos/genética , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/genética , Variación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(22): 8019-24, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24821790

RESUMEN

The accuracy of tail-anchored (TA) protein targeting to the endoplasmic reticulum (ER) depends on the Guided Entry of Tail-Anchored (Get) protein targeting machinery. The fate of TA proteins that become inappropriately inserted into other organelles, such as mitochondria, is unknown. Here, we identify Msp1, a conserved, membrane-anchored AAA-ATPase (ATPase associated with a variety of cellular activities) that localizes to mitochondria and peroxisomes, as a critical factor in a quality control pathway that senses and degrades TA proteins mistargeted to the outer mitochondrial membrane (OMM). Pex15 is normally targeted by the Get pathway to the ER, from where it travels to peroxisomes. Loss of Msp1 or loss of the Get pathway results in the redistribution of Pex15 to mitochondria. Cells lacking both a functional Get pathway and Msp1 accumulate increased amounts of Pex15 on the OMM and display severely dysfunctional mitochondrial morphology. In addition, Msp1 binds and promotes the turnover of a Pex15 mutant that is misdirected to the OMM. Our data suggest that Msp1 functions in local organelle surveillance by extracting mistargeted proteins, ensuring the fidelity of organelle specific-localization of TA proteins.


Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/química , Secuencia Conservada , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/genética , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Peroxisomas/metabolismo , Fosfoproteínas/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
7.
Elife ; 2: e00498, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23741617

RESUMEN

Phosphorylation of the α-subunit of initiation factor 2 (eIF2) controls protein synthesis by a conserved mechanism. In metazoa, distinct stress conditions activate different eIF2α kinases (PERK, PKR, GCN2, and HRI) that converge on phosphorylating a unique serine in eIF2α. This collection of signaling pathways is termed the 'integrated stress response' (ISR). eIF2α phosphorylation diminishes protein synthesis, while allowing preferential translation of some mRNAs. Starting with a cell-based screen for inhibitors of PERK signaling, we identified a small molecule, named ISRIB, that potently (IC50 = 5 nM) reverses the effects of eIF2α phosphorylation. ISRIB reduces the viability of cells subjected to PERK-activation by chronic endoplasmic reticulum stress. eIF2α phosphorylation is implicated in memory consolidation. Remarkably, ISRIB-treated mice display significant enhancement in spatial and fear-associated learning. Thus, memory consolidation is inherently limited by the ISR, and ISRIB releases this brake. As such, ISRIB promises to contribute to our understanding and treatment of cognitive disorders. DOI:http://dx.doi.org/10.7554/eLife.00498.001.


Asunto(s)
Cognición , Memoria , Biosíntesis de Proteínas , ARN Mensajero/genética , Acetamidas/farmacología , Animales , Línea Celular , Ciclohexilaminas/farmacología , Retículo Endoplásmico/metabolismo , Factor 1 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 1 Eucariótico de Iniciación/metabolismo , Humanos , Ratones , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología
8.
Dev Cell ; 24(2): 182-95, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23333351

RESUMEN

Spatial and temporal control of actin filament barbed end elongation is crucial for force generation by actin networks. In this study, genetics, cell biology, and biochemistry were used to reveal three complementary mechanisms that regulate actin filament barbed end elongation in Arp2/3-derived networks. Aip1 inhibits elongation of aged ADP-actin filaments decorated with cofilin and, together with capping protein (CP), maintains a high level of assembly-competent actin species. We identified Abp1 and Aim3 as two additional proteins that work together to inhibit barbed end elongation. Abp1/Aim3 collaborates with CP to control elongation of newly assembled ATP-actin filaments to organize filament polarity within actin networks. Thus, three distinct mechanisms control filament elongation in different regions of Arp2/3 networks, maintaining pools of assembly-competent actin species while ensuring proper filament polarity and facilitating force production.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Factores Despolimerizantes de la Actina/metabolismo , Animales , Línea Celular , Proteínas de Microfilamentos/metabolismo , Potoroidae
9.
J Cell Biol ; 188(6): 769-77, 2010 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-20231387

RESUMEN

Although actin filaments can form by oligomer annealing in vitro, they are assumed to assemble exclusively from actin monomers in vivo. In this study, we show that a pool of actin resistant to the monomer-sequestering drug latrunculin A (lat A) contributes to filament assembly in vivo. Furthermore, we show that the cofilin accessory protein Aip1 is important for establishment of normal actin monomer concentration in cells and efficiently converts cofilin-generated actin filament disassembly products into monomers and short oligomers in vitro. Additionally, in aip1Delta mutant cells, lat A-insensitive actin assembly is significantly enhanced. We conclude that actin oligomer annealing is a physiologically relevant actin filament assembly pathway in vivo and identify Aip1 as a crucial factor for shifting the distribution of short actin oligomers toward monomers during disassembly.


Asunto(s)
Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas de Microfilamentos/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Tiazolidinas/farmacología
10.
J Cell Biol ; 178(7): 1251-64, 2007 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-17875745

RESUMEN

Cofilin is the major mediator of actin filament turnover in vivo. However, the molecular mechanism of cofilin recruitment to actin networks during dynamic actin-mediated processes in living cells and cofilin's precise in vivo functions have not been determined. In this study, we analyzed the dynamics of fluorescently tagged cofilin and the role of cofilin-mediated actin turnover during endocytosis in Saccharomyces cerevisiae. In living cells, cofilin is not necessary for actin assembly on endocytic membranes but is recruited to molecularly aged adenosine diphosphate actin filaments and is necessary for their rapid disassembly. Defects in cofilin function alter the morphology of actin networks in vivo and reduce the rate of actin flux through actin networks. The consequences of decreasing actin flux are manifested by decreased but not blocked endocytic internalization at the plasma membrane and defects in late steps of membrane trafficking to the vacuole. These results suggest that cofilin-mediated actin filament flux is required for the multiple steps of endocytic trafficking.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Actinas/química , Actinas/metabolismo , Endocitosis , Nucleótidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina , Carboxipeptidasas/metabolismo , Membrana Celular/metabolismo , Hidrolasas/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Mutación/genética , Conformación Proteica , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/enzimología
11.
J Am Chem Soc ; 128(30): 9640-1, 2006 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-16866512

RESUMEN

We report the synthesis, properties, and biological applications of Ratio-Peroxyfluor-1 (RPF1), a new ratiometric fluorescent reporter for hydrogen peroxide. RPF1 is comprised of a two-fluorophore cassette, where the spectral overlap between coumarin donor and fluoran/fluorescein acceptor partners can be controlled by the chemoselective peroxide-mediated deprotection of boronic ester pendants on the acceptor dye. RPF1 features good selectivity for hydrogen peroxide over a variety of reactive oxygen species, including superoxide and nitric oxide, a ca. 8-fold increase in fluorescence intensity ratio (lambda517/lambda464) upon H2O2 reaction, and excitation and emission profiles in the visible region. Experiments with viable yeast mitochondria show that RPF1 can monitor and quantify endogenous production of H2O2, establishing the potential utility of this approach for probing peroxide biology in living systems.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Peróxido de Hidrógeno/química , Fluoresceína/química , Colorantes Fluorescentes/química , Estructura Molecular
12.
J Biol Chem ; 281(4): 2177-83, 2006 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-16272155

RESUMEN

The dynamin-related GTPase, Dnm1, self-assembles into punctate structures that are targeted to the outer mitochondrial membrane where they mediate mitochondrial division. Post-targeting, Dnm1-dependent division is controlled by the actions of the WD repeat protein, Mdv1, and the mitochondrial tetratricopeptide repeat-like outer membrane protein, Fis1. Our previous studies suggest a model where at this step Mdv1 functions as an adaptor linking Fis1 with Dnm1. To gain insight into the exact role of the Fis1.Mdv1.Dnm1 complex in mitochondrial division, we performed a structure-function analysis of the Mdv1 adaptor. Our analysis suggests that dynamic interactions between Mdv1 and Dnm1 play a key role in division by regulating Dnm1 self-assembly.


Asunto(s)
Proteínas Portadoras/fisiología , GTP Fosfohidrolasas/fisiología , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/química , División Celular , Citoplasma/metabolismo , Dimerización , GTP Fosfohidrolasas/química , Técnicas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Guanosina Trifosfato/química , Microscopía Electrónica , Microscopía Fluorescente , Mitocondrias/metabolismo , Proteínas Mitocondriales , Modelos Moleculares , Mutagénesis , Mutación , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Factores de Tiempo
13.
J Cell Biol ; 160(3): 303-11, 2003 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-12566426

RESUMEN

A balance between fission and fusion events determines the morphology of mitochondria. In yeast, mitochondrial fission is regulated by the outer membrane-associated dynamin-related GTPase, Dnm1p. Mitochondrial fusion requires two integral outer membrane components, Fzo1p and Ugo1p. Interestingly, mutations in a second mitochondrial-associated dynamin-related GTPase, Mgm1p, produce similar phenotypes to fzo1 and ugo cells. Specifically, mutations in MGM1 cause mitochondrial fragmentation and a loss of mitochondrial DNA that are suppressed by abolishing DNM1-dependent fission. In contrast to fzo1ts mutants, blocking DNM1-dependent fission restores mitochondrial fusion in mgm1ts cells during mating. Here we show that blocking DNM1-dependent fission in Deltamgm1 cells fails to restore mitochondrial fusion during mating. To examine the role of Mgm1p in mitochondrial fusion, we looked for molecular interactions with known fusion components. Immunoprecipitation experiments revealed that Mgm1p is associated with both Ugo1p and Fzo1p in mitochondria, and that Ugo1p and Fzo1p also are associated with each other. In addition, genetic analysis of specific mgm1 alleles indicates that Mgm1p's GTPase and GTPase effector domains are required for its ability to promote mitochondrial fusion and that Mgm1p self-interacts, suggesting that it functions in fusion as a self-assembling GTPase. Mgm1p's localization within mitochondria has been controversial. Using protease protection and immuno-EM, we have shown previously that Mgm1p localizes to the intermembrane space, associated with the inner membrane. To further test our conclusions, we have used a novel method using the tobacco etch virus protease and confirm that Mgm1p is present in the intermembrane space compartment in vivo. Taken together, these data suggest a model where Mgm1p functions in fusion to remodel the inner membrane and to connect the inner membrane to the outer membrane via its interactions with Ugo1p and Fzo1p, thereby helping to coordinate the behavior of the four mitochondrial membranes during fusion.


Asunto(s)
Células Eucariotas/enzimología , Proteínas de Unión al GTP/metabolismo , Membranas Intracelulares/enzimología , Fusión de Membrana/fisiología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Dinaminas/metabolismo , Células Eucariotas/citología , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Regulación Fúngica de la Expresión Génica/fisiología , Membranas Intracelulares/ultraestructura , Sustancias Macromoleculares , Proteínas de la Membrana/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Modelos Biológicos , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética
14.
J Cell Biol ; 158(3): 445-52, 2002 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-12163467

RESUMEN

Yeast mitochondrial fission is a multistep process during which the dynamin-related GTPase, Dnm1p, assembles into punctate structures that associate with the outer mitochondrial membrane and mediate mitochondrial division. Steps in the Dnm1p-dependent process of fission are regulated by the actions of the WD repeat protein, Mdv1p, and the mitochondrial outer membrane protein, Fis1p. Our previous studies suggested a model where Mdv1p functions to regulate fission at a post-Dnm1p assembly step and Fis1p functions at two distinct steps, at an early point, to regulate Dnm1p assembly, and later, together with Mdv1p, to facilitate Dnm1p-dependent mitochondrial fission. To test this model, we have examined the physical and functional relationship between Mdv1p and Fis1p and present genetic, biochemical, and two-hybrid data indicating that a Fis1p-Mdv1p complex is required to regulate mitochondrial fission. To further define the role of Mdv1p in fission, we examined the structural features of Mdv1p required for its interactions with Dnm1p and Fis1p. Data from two-hybrid analyses and GFP-tagged domains of Mdv1p indicate that it contains two functionally distinct domains that enable it to function as a molecular adaptor to regulate sequential interactions between Dnm1p and Fis1p and catalyze a rate-limiting step in mitochondrial fission.


Asunto(s)
Proteínas Portadoras/metabolismo , División Celular/fisiología , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/genética , Compartimento Celular/fisiología , Citosol/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Factores de Integración del Huésped , Membranas Intracelulares/ultraestructura , Sustancias Macromoleculares , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Modelos Moleculares , Unión Proteica/fisiología , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA