Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Wound J ; 9(5): 488-93, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22182219

RESUMEN

The antibiotic-resistant bacteria are a major concern to wound care because of their ability to resist many of the antibiotics used today to treat infections. Consequently, other antimicrobials, in particular ionic silver, are considered ideal topical agents for effectively helping to manage and prevent local infections. Little is known about the antimicrobial efficacy of ionic silver on antibiotic-resistant bacteria at different pH values. Consequently, in this study our aim was to evaluate the effect of pH on the antimicrobial efficacy of a silver alginate (SA) and a silver carboxymethyl cellulose (SCMC) dressing on antibiotic-resistant bacteria isolated from burn patients. Forty-nine antibiotic-resistant bacteria, including Vancomycin-resistant Enterococcus faecium, meticillin-resistant Staphylococcus aureus, multidrug-resistant (MDR) Pseudomonas aeruginosa, MDR Vibrio sp, MDR Stenotrophomonas maltophilia, extended-spectrum ß-lactamase (ESBL) producing Salmonella sp, ESBL producing Klebsiella pneumoniae, ESBL producing Proteus mirabilis, ESBL producing Escherichia coli and MDR Acinetobacter baumannii, routinely isolated from burn wounds were used in the study and evaluated for their susceptibility to two silver containing wound dressings using a standardised antimicrobial efficacy screening assay [corrected zone of inhibition (CZOI)]. The mean overall CZOI for the Gram-positive isolates at a pH of 5·5 were very similar for both dressings. A mean CZOI of 5 mm was recorded for the SCMC dressing, which was slightly higher, at 5·4 mm for the SA dressing. At a pH of 7·0 both dressings, in general, showed a similar activity. However, at a pH of 8·5 the mean CZOI of the SCMC dressing was found to be significantly (P < 0·05) higher than the SA dressing for a select number of isolates. The mean overall CZOI for the Gram-negative bacteria followed a similar pattern as observed with the Gram-positive bacteria. Susceptibility to silver ions did vary significantly between genera and species of bacteria. Interestingly, when pH was changed from 8·5 to 5·5 antimicrobial activity for both dressings in general increased significantly (P < 0·05). Overall, all forty-nine antibiotic-resistant bacteria isolated from burn wounds showed susceptibility to the antimicrobial activity of both silver containing wound dressings over all pH ranges. In addition, the study showed that the performance of both dressings apparently increased when pH became more acidic. The findings in this study may help to further enhance our knowledge of the role pH plays in affecting both bacterial susceptibility and antimicrobial activity of silver containing wound dressings.


Asunto(s)
Antibacterianos/farmacología , Quemaduras/microbiología , Farmacorresistencia Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Compuestos de Plata/farmacología , Infección de Heridas/terapia , Vendajes , Quemaduras/terapia , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Infección de Heridas/microbiología
2.
Int Wound J ; 9(4): 428-35, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22182197

RESUMEN

Antibiotics are routinely used in woundcare for the treatment of local and systemic infections. Our goals in this paper were to (i) evaluate the antibiotic sensitivity of bacteria isolated from burn and chronic wounds and (ii) evaluate the effect of pH and bacterial phenotype on the efficacy of antibiotics. Chronic and burn wound isolates, which had been routinely isolated from patients at West Virginia University Hospital, USA, were evaluated for their sensitivity to antibiotics. Antimicrobial susceptibility testing was performed using a standardised disk diffusion assay on agar (quasi/non biofilm) and poloxamer (biofilm). Many of the Gram-positive and -negative isolates demonstrated changes in susceptibility to antibiotics when grown at different pH values and phenotypic states. Findings of this study highlight the clinical relevance that both pH and the phenotypic state of bacteria have on antibiotic performance. The study in particular has shown that bacteria exhibit an enhanced tolerance to antibiotics when grown in the biofilm phenotypic state. Such a finding suggests that more appropriate antibiotic sensitivity testing for woundcare and medicine is warranted to help assist in the enhancement of positive clinical outcomes.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Fenotipo , Muestreo , Sensibilidad y Especificidad , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Heridas y Lesiones/tratamiento farmacológico , Heridas y Lesiones/microbiología
3.
Wound Repair Regen ; 19(6): 767-74, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22092847

RESUMEN

In this study our objectives were (1) to investigate whether meticillin-resistant Staphylococcus aureus (MRSA) showed an increased tolerance to silver wound dressings compared with meticillin-sensitive S. aureus (MSSA); and (2) to evaluate the effects of bacterial phenotypic states of MRSA and MSSA, and pH, on the activity of silver wound dressings and two antibiotics, ampicillin and clindamycin. Twenty MRSA strains and 10 MSSA strains isolated from burns patients in South Africa were evaluated for their susceptibility to a silver alginate and a silver carboxymethyl cellulose wound dressing, employing a corrected zone of inhibition assay, conducted on Mueller Hinton agar and a poloxamer-based biofilm model. When exposed to the two silver dressings, all 30 S. aureus strains showed susceptibility. Possible enhanced antimicrobial efficacy of the silver dressings occurred when pH was lowered to 5.5, compared with a pH of 7.0. When all S. aureus were grown in the biofilm phenotypic state and exposed to both silver dressings and antibiotics, enhanced tolerance was noted. Susceptibility to silver was overall higher for MRSA when compared with MSSA. This study showed that the effect of pH and bacterial phenotypic state must be considered when the antimicrobial activity of silver wound dressings is being investigated. It is evident from the data generated that both pH and the bacterial phenotypic state are factors that induce changes that affect both antimicrobial performance and bacterial susceptibility.


Asunto(s)
Antibacterianos/farmacología , Vendajes , Quemaduras/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Ampicilina/farmacología , Biopelículas , Clindamicina/farmacología , Medios de Cultivo , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Compuestos de Plata/farmacología , Staphylococcus aureus/aislamiento & purificación
4.
Wound Repair Regen ; 19(3): 436-41, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21518089

RESUMEN

Silver-impregnated wound dressings continue to be routinely used for the management of infected wounds, or wounds that are at risk of becoming infected. The ability of antimicrobials that have been incorporated into wound dressings to kill microorganisms within the dressing requires appropriate evaluation using in vitro models. In vitro models that have been exploited for this purpose have included the corrected zone of inhibition and the log reduction assay. However, these and other related culturable-based assays are purported to have poor correlation with the overall microbicidal barrier activity of an antimicrobial wound dressing. This is because culturable-based methods only retrospectively indicate bacterial cell death and do not take into account viable but nonculturable states of microorganisms. Consequently, it was the purpose of this study to show that the use of flow cytometry, in conjunction with Syto(®) 9 and propidium iodide, could be used as a method for accurately evaluating and comparing the antimicrobial barrier efficacy of a silver alginate and a silver carboxymethyl cellulose dressing on individual bacterial cells without the need for the use of culturable assays. When a comparison of antimicrobial barrier efficacy on individual planktonic Staphylococcus aureus cells in a simulated wound fluid assay was made between each dressing, enhanced antimicrobial efficacy (as showed by the percentage of dead to alive bacterial cells) of the silver alginate dressing was shown. When Pseudomonas aeruginosa was exposed to both silver-containing dressings, equivalent kill rates were showed for up to 4 days. This result was not significantly different (p<0.05). By utilizing the use of flow cytometric assays, the antimicrobial barrier efficacy of wound dressings can be accurately evaluated enabling differentiation to be achieved between individual dead and live bacteria. The flow cytometric assay is considered a significant advancement to the traditionally used culturable-based methods that are presently used for antimicrobial barrier efficacy testing on planktonic microorganisms.


Asunto(s)
Citometría de Flujo , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/efectos de los fármacos , Compuestos de Plata/administración & dosificación , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/efectos de los fármacos , Infección de Heridas/prevención & control , Antiinfecciosos/administración & dosificación , Carboximetilcelulosa de Sodio , Citometría de Flujo/métodos , Apósitos Oclusivos , Compuestos Orgánicos , Plancton , Propidio , Infección de Heridas/microbiología
5.
Int Wound J ; 8(3): 237-43, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21470369

RESUMEN

Wound dressings impregnated with silver have a role to play in aiding to reduce both the dressing and wound microbial bioburden. It is therefore imperative that antimicrobial wound dressings have efficacy on a broad range of clinical significant microorganisms. Accordingly, this study aimed to determine the antimicrobial efficacy of a silver alginate dressing against 115 wound isolates that had been isolated routinely from patients at West Virginia University Hospital. Standardised corrected zones of inhibition (CZOIs) were performed on all clinical isolates. It was found that the silver alginate dressing was able to inhibit the growth of all microorganisms tested. In particular, the silver alginate dressing inhibited the growth of Candida albicans and yeasts with CZOI of 3-11·5 mm. All meticillin-resistant Staphylococcus aureus (MRSA) strains were found to be sensitive to the silver alginate dressing with a CZOI range calculated at 3-7·8 mm. Sensitivity to the silver alginate dressing was also evident for S. aureus and vancomycin-resistant Enterococci. CZOIs of 4·25 mm were calculated for Enterococcus faecium and 9·8 mm for viridans streptococcus. The bacteria which demonstrated the highest tolerance to ionic silver included Enterobacter cloacae and Acinetobacter baumannii. Contrary to this the most responsive microorganisms to ionic silver included strains of staphylococci, viridans streptococcus and Candida albicans. No antibiotic-resistant isolates, as identified by Kirby Bauer Clinical Laboratory Standards Institute classification system, were found to be resistant to ionic silver. When a selected number of microorganisms were grown in the biofilm phenotypic state enhanced tolerance to silver was observed, compared to their non biofilm counterparts. Overall, this study has demonstrated the broad antimicrobial activity of a silver alginate dressing on wound isolates grown in the non biofilm and biofilm state. This finding is clinically relevant as both the non biofilm and biofilm phenotypic states of microorganisms are evident in wounds and therefore significant to delayed healing. Consequently, it is imperative that antimicrobial wound dressings demonstrate antimicrobial activity against microorganisms in both phenotypic states.


Asunto(s)
Alginatos/farmacología , Vendajes , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Compuestos de Plata/farmacología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco , Farmacorresistencia Microbiana , Ácido Glucurónico/farmacología , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Ácidos Hexurónicos/farmacología , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Muestreo , Sensibilidad y Especificidad , Infección de Heridas/microbiología , Infección de Heridas/terapia
6.
J Am Col Certif Wound Spec ; 2(4): 86-90, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24527156

RESUMEN

BACKGROUND: Nonhealing and stalled chronic wounds are often reported to reside within an alkaline environment. Consequently, a number of researchers have proposed that lowering the pH of a chronic wound environment will enable healing to progress. However, it is not known whether the efficacies of silver-impregnated wound dressings are affected by pH. OBJECTIVE: To investigate whether pH has an effect on the antimicrobial barrier efficacy of a silver alginate wound dressing on wound isolates. METHODS: Twenty-five bacteria and yeasts that had been routinely isolated from chronic wounds were separately exposed to a silver alginate wound dressing with the use of a standardized corrected zone of inhibition (CZOI) assay. RESULTS: The silver alginate dressing demonstrated a broad spectrum of antimicrobial barrier activity within the dressing against all wound isolates. However, at a pH of 5.5, compared with a pH of 7, the antimicrobial barrier activity of the silver alginate dressing significantly increased. For all yeasts the CZOI ranged from 6.25 to 11 mm at a pH of 7. At a pH of 5.5, the CZOI range increased from 8.5 to 12.25 mm. For the Gram-negative isolates, the CZOI ranged from 0.75 to 6.5 mm at a pH 7, compared with a CZOI range of 2.75 to 8 mm at pH 5.5. The CZOI for the Gram-positive isolates, including meticillin-resistant Staphylococcus aureus, ranged from 3 to 7.75 mm at pH 7 and from 4.5 to 11.75 mm at pH 5.5. CONCLUSION: For all isolates tested, excluding one strain of Candida albicans and one vancomycin-resistant Enterococcus strain, lowering pH to 5.5 resulted in an improvement in the antimicrobial barrier activity within the silver alginate dressing. Based on these initial in vitro findings, it is possible to suggest that there may be benefits to maintaining an infected or recalcitrant wound in a slightly acid (pH 5.5) environment. In particular, doing so may lead to an enhanced antimicrobial barrier effect of silver, a quicker reduction in the wound microbial bioburden, and therefore a reduction in the need for prolonged antimicrobial use. However, more in vitro and in vivo studies would be warranted to further substantiate these claims.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA