Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Regen Ther ; 18: 292-301, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34504910

RESUMEN

INTRODUCTION: Transplantation of IC-2-engineered bone marrow-derived mesenchymal stem cell (BM-MSC) sheets (IC-2 sheets) was previously reported to potentially reduce liver fibrosis. METHODS: This study prepared IC-2-engineered cell sheets from multiple lots of BM-MSCs and examined the therapeutic effects of these cell sheets on liver fibrosis induced by carbon tetrachloride in mice. The predictive factors for antifibrotic effect on liver fibrosis were tried to identify in advance. RESULTS: Secreted matrix metalloproteinase (MMP)-14 was found to be a useful predictive factor to reduce liver fibrosis. Moreover, the cutoff index of MMP-14 for 30% reduction of liver fibrosis was 0.918 fg/cell, judging from univariate analysis and receiver operating curve analysis. In addition, MMP-13 activity and thioredoxin contents in IC-2 sheets were also inversely correlated with hepatic hydroxyproline contents. Finally, IC-2 was also found to promote MMP-14 secretion from BM-MSCs of elderly patients. Surprisingly, the values of secreted MMP-14 from BM-MSCs of elderly patients were much higher than those of young persons. CONCLUSION: The results of this study suggest that the IC-2 sheets would be applicable to clinical use in autologous transplantation for patients with cirrhosis regardless of the patient's age.

2.
Regen Ther ; 9: 45-57, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30525075

RESUMEN

INTRODUCTION: We previously reported that transplantation of hepatic cell sheets from human bone marrow-derived mesenchymal stem cells (BM-MSCs) with hexachlorophene, a Wnt/ß-catenin signaling inhibitor, ameliorated acute liver injury. In a further previous report, we identified IC-2, a newly synthesized derivative of the Wnt/ß-catenin signaling inhibitor ICG-001, as a potent inducer of hepatic differentiation of BM-MSCs. METHODS: We manufactured hepatic cell sheets by engineering from human BM-MSCs using the single small molecule IC-2. The therapeutic potential of IC-2-induced hepatic cell sheets was assessed by transplantation of IC-2- and hexachlorophene-treated hepatic cell sheets using a mouse model of acute liver injury. RESULTS: Significant improvement of liver injury was elicited by the IC-2-treated hepatic cell sheets. The expression of complement C3 was enhanced by IC-2, followed by prominent hepatocyte proliferation stimulated through the activation of NF-κB and its downstream molecule STAT-3. Indeed, IC-2 also enhanced the expression of amphiregulin, resulting in the activation of the EGFR pathway and further stimulation of hepatocyte proliferation. As another important therapeutic mechanism, we revealed prominent reduction of oxidative stress mediated through upregulation of the thioredoxin (TRX) system by IC-2-treated hepatic cell sheets. The effects mediated by IC-2-treated sheets were superior compared with those mediated by hexachlorophene-treated sheets. CONCLUSION: The single compound IC-2 induced hepatic cell sheets that possess potent regeneration capacity and ameliorate acute liver injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA