Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genes Genomics ; 44(3): 343-357, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34843089

RESUMEN

BACKGROUND: Caenorhabditis elegans encodes three class I histone deacetylases (HDACs), HDA-1, HDA-2, and HDA-3. Although HDA-1 is known to be involved in embryogenesis, the regulatory roles of HDA-2 and HDA-3 in embryonic development remain unexplored. OBJECTIVE: To elucidate the functional roles of the three class I HDACs in C. elegans embryonic development. METHODS: The roles of Class I HDACs, HDA-1, HDA-2, and HDA-3 in Caenorhabditis elegans during embryogenesis were investigated through the analysis of embryonic lethality via gene knockdown or deletion mutants. Additionally, the size of these knockdown and mutant eggs was observed using a differential interference contrast microscope. Finally, expression pattern and tissue-specific role of hda-2 and transcriptome of the hda-2 mutant were analyzed. RESULTS: Here, we report that HDA-1 and HDA-2, but not HDA-3, play essential roles in Caenorhabditis elegans embryonic development. Our observations of the fertilized egg size variance demonstrated that HDA-2 is involved in regulating the size of fertilized eggs. Combined analysis of expression patterns and sheath cell-specific rescue experiments indicated that the transgenerational role of HDA-2 is involved in the viability of embryonic development and fertilized egg size regulation. Furthermore, transcriptome analysis of hda-2 mutant embryos implies that HDA-2 is involved in epigenetic regulation of embryonic biological processes by downregulating and upregulating the gene expression. CONCLUSION: Our finding suggests that HDA-2 regulates the embryonic development in Caenorhabditis elegans by controling a specific subset of genes, and this function might be mediated by transgenerational epigenetic effect.


Asunto(s)
Caenorhabditis elegans , Cigoto , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética , Histona Desacetilasas/genética , Cigoto/metabolismo
2.
Genes Genomics ; 43(5): 553-565, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33740234

RESUMEN

BACKGROUND: Histone deacetylase (HDAC)-1, a Class-I HDAC family member, forms three types of complexes, the nucleosome remodeling deacetylase, Sin3, and CoREST complexes with the specific corepressor components chromodomain-helicase-DNA-binding protein 3 (Mi2/CHD-3), Sin3, and REST corepressor 1 (RCOR1), respectively, in humans. OBJECTIVE: To elucidate the functional relationships among the three transcriptional corepressors during embryogenesis. METHODS: The activities of HDA-1, LET-418, SIN-3, and SPR-1, the homologs of HDAC-1, Mi2, Sin3, and RCOR1 in Caenorhabditis elegans during embryogenesis were investigated through measurement of relative mRNA expression levels and embryonic lethality given either gene knockdown or deletion. Additionally, the terminal phenotypes of each knockdown and mutant embryo were observed using a differential-interference contrast microscope. Finally, the functional relationships among the three corepressors were examined through genetic interactions and transcriptome analyses. RESULTS: Here, we report that each of the corepressors LET-418, SIN-3, and SPR-1 are expressed and have essential roles in C. elegans embryonic development. Our terminal phenotype observations of single mutants further implied that LET-418, SIN-3, and SPR-1 play similar roles in promoting advancement to the middle and late embryonic stages. Combined analysis of genetic interactions and gene ontology of these corepressors indicate a prominent overlapping role among SIN-3, SPR-1, and LET-418 and between SIN-3 and SPR-1. CONCLUSION: Our findings suggest that the class-I HDAC-1 corepressors LET-418, SIN-3, and SPR-1 may cooperatively regulate the expression levels of some genes during C. elegans embryogenesis or may have some similar roles but functioning independently within a specific cell.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Transcriptoma
3.
PLoS One ; 14(9): e0215187, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31504044

RESUMEN

Obtaining a comprehensive understanding of the gene regulatory networks, or gene cascades, involved in cell fate determination and cell lineage segregation in Caenorhabditis elegans is a long-standing challenge. Although RNA-sequencing (RNA-Seq) is a promising technique to resolve these questions, the bioinformatics tools to identify associated gene cascades from RNA-Seq data remain inadequate. To overcome these limitations, we developed Gene Cascade Finder (GCF) as a novel tool for building gene cascades by comparison of mutant and wild-type RNA-Seq data along with integrated information of protein-protein interactions, expression timing, and domains. Application of GCF to RNA-Seq data confirmed that SPN-4 and MEX-3 regulate the canonical Wnt pathway during embryonic development. Moreover, lin-35, hsp-3, and gpa-12 were found to be involved in MEX-1-dependent neurogenesis, and MEX-3 was found to control the gene cascade promoting neurogenesis through lin-35 and apl-1. Thus, GCF could be a useful tool for building gene cascades from RNA-Seq data.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Redes Reguladoras de Genes , Genómica/métodos , Mapas de Interacción de Proteínas , Programas Informáticos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA