Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5839, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992011

RESUMEN

3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays).


Asunto(s)
Materiales Biocompatibles , Coloides , Conductividad Eléctrica , Líquidos Iónicos , Poliestirenos , Impresión Tridimensional , Líquidos Iónicos/química , Coloides/química , Materiales Biocompatibles/química , Animales , Poliestirenos/química , Ratas , Tinta , Polímeros/química , Tiofenos/química , Neuronas/fisiología , Compuestos Bicíclicos Heterocíclicos con Puentes/química
2.
ACS Appl Mater Interfaces ; 16(27): 34732-34742, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38938185

RESUMEN

Integrating gels with human skin through wearables provides unprecedented opportunities for health monitoring technology and artificial intelligence. However, most conductive hydrogels, organogels, and ionogels lack essential environmental stability, biocompatibility, and adhesion for reliable epidermal sensing. In this study, we have developed a liquid metal eutectogel simultaneously possessing superior viscoelasticity, semiflowability, and mechanical rigidity for low interfacial skin impedance, high skin adhesion, and durability. Liquid metal particles (LMPs) are employed to generate free radicals and gallium ions to accelerate the polymerization of acrylic acid monomers in a deep eutectic solvent (DES), obtaining highly viscoelastic polymer networks via physical cross-linking. In particular, graphene oxide (GO) is utilized to encapsulate the LMPs through a sonication-assisted electrostatic assembly to stabilize the LMPs in DES, which also enhances the mechanical toughness and regulates the rheological properties of the eutectogels. Our optimized semi-flowable eutectogel exhibits viscous fluid behavior at low shear rates, facilitating a highly conformable interface with hairy skin. Simultaneously, it demonstrates viscoelastic behavior at high shear rates, allowing for easy peel-off. These distinctive attributes enable the successful applications of on-skin adhesive strain sensing and high-fidelity human electrophysiological (EP) monitoring, showcasing the versatility of these ionically conductive liquid metal eutectogels in advanced personal health monitoring.


Asunto(s)
Adhesivos , Humanos , Adhesivos/química , Grafito/química , Dispositivos Electrónicos Vestibles , Geles/química , Viscosidad , Piel/química , Elasticidad , Hidrogeles/química
3.
Biosens Bioelectron ; 225: 115060, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36701947

RESUMEN

A highly stretchable and tissue-adhesive multifunctional sensor based on structurally engineered islets embedded in ultra-soft hydrogel is reported for monitoring of bladder activity in overactive bladder (OAB) induced rat and anesthetized pig. The use of hydrogel yielded a much lower sensor modulus (1 kPa) compared to that of the bladder (300 kPa), while the strong adhesiveness of the hydrogel (adhesive strength: 260.86 N/m) allowed firm attachment onto the bladder. The change in resistance of printed liquid metal particle thin-film lines under strain were used to detect bladder inflation and deflation; due to the high stretchability and reliability of the lines, surface strains of 200% could be measured repeatedly. Au electrodes coated with Platinum black were used to detect electromyography (EMG). These electrodes were placed on structurally engineered rigid islets so that no interfacial fracture occurs under high strains associated with bladder expansion. On the OAB induced rat, stronger signals (change in resistance and EMG root-mean-square) were detected near intra-bladder pressure maxima, thus showing correlation to bladder activity. Moreover, using robot-assisted laparoscopic surgery, the sensor was placed onto the bladder of an anesthetized pig. Under voiding and filling, bladder strain and EMG were once again monitored. These results confirm that our proposed sensor is a highly feasible, clinically relevant implantable device for continuous monitoring OAB for diagnosis and treatment.


Asunto(s)
Técnicas Biosensibles , Adhesivos Tisulares , Vejiga Urinaria Hiperactiva , Animales , Ratas , Porcinos , Vejiga Urinaria Hiperactiva/diagnóstico , Vejiga Urinaria Hiperactiva/complicaciones , Hidrogeles , Reproducibilidad de los Resultados
4.
Soft Robot ; 7(5): 564-573, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31977289

RESUMEN

There has been a great deal of interest in designing soft robots that can mimic a human system with haptic and proprioceptive functions. There is now a strong demand for soft robots that can sense their surroundings and functions in harsh environments. This is because the wireless sensing and actuating capabilities of these soft robots are very important for monitoring explosive gases in disaster areas and for moving through contaminated environments. To develop these wireless systems, complex electronic circuits must be integrated with various sensors and actuators. However, the conventional electronic circuits based on silicon are rigid and fragile, which can limit their reliable integration with soft robots for achieving continuous locomotion. In our study, we developed an untethered, soft robotic hand that mimics human fingers. The soft robotic fingers are composed of a thermally responsive elastomer composite that includes capsules of ethanol and liquid metals for its shape deformation through an electrothermal phase transition. And these soft actuators are integrated fully with flexible forms of heaters, with pressure, temperature, and hydrogen gas sensors, and wireless electronic circuits. Entire functions of this soft hand, including the gripping motion of soft robotic fingers and the real-time detections of tactile pressures, temperatures, and hydrogen gas concentrations, are monitored or controlled wirelessly using a smartphone. This wireless sensing and actuating system for somatosensory and respiratory functions of a soft robot provides a promising strategy for next-generation robotics.


Asunto(s)
Robótica , Elastómeros , Mano , Fuerza de la Mano , Humanos , Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA