Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36966, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281463

RESUMEN

The widespread proliferation of water hyacinth (Eichhornia crassipes) in aquatic ecosystems has raised significant ecological, environmental, and socioeconomic concerns globally. These concerns include reduced biodiversity, impeded water transportation and recreational activities, damage to marine infrastructure, and obstructions in power generation dams and irrigation systems. This review critically evaluates the challenges posed by water hyacinth (WH) and investigates potential strategies for converting its biomass into value-added agricultural products, specifically nanonutrients-fortified, biochar-based, green fertilizer. The review examines various methods for producing functional nanobiochar and green fertilizer to enhance plant nutrient uptake and improve soil nutrient retention. These methods include slow or fast pyrolysis, gasification, laser ablation, arc discharge, or chemical precipitation used for producing biochar which can then be further reduced to nano-sized biochar through ball milling, a top-down approach. Through these means, utilization of WH-derived biomass in economically viable, eco-friendly, sustainable, precision-driven, and smart agricultural practices can be achieved. The positive socioeconomic impacts of repurposing this invasive aquatic plant are also discussed, including the prospects of a circular economy, job creation, reduced agricultural input costs, increased agricultural productivity, and sustainable environmental management. Utilizing WH for nanobiochar (or nano-enabled biochar) for green fertilizer production offers a promising strategy for waste management, environmental remediation, improvement of waterway transportation infrastructure, and agricultural sustainability. To underscore the importance of this work, a metadata analysis of literature carried out reveals that an insignificant section of the body of research on WH and biochar have focused on the nano-fortification of WH biochar for fertilizer development. Therefore, this review aims to expand knowledge on the upcycling of non-food crop biomass, particularly using WH as feedstock, and provides crucial insights into a viable solution for mitigating the ecological impacts of this invasive species while enhancing agricultural productivity.

2.
Materials (Basel) ; 12(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609819

RESUMEN

In this work, CoPi and Co(OH)2 nanoparticles were deposited on the surface of Ta3N5 nanorod-arrays to yield a novel broad-spectrum response photocatalytic material for 304 stainless steel photocatalytic cathodic protection. The Ta3N5 nanorod-arrays were prepared by vapor-phase hydrothermal (VPH) and nitriding processes and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy, respectively, to obtain morphologies, crystal structures, surface compositions, and light response range. In order to analyze the performance improvement mechanism of CoPi/Co(OH)2 on Ta3N5 nanorod-arrays, the electrochemical behavior of modified and unmodified Ta3N5 was obtained by measuring the open circuit potential and photocurrent in 3.5 wt% NaCl solution. The results revealed that the modified Ta3N5 material better protects 304 stainless steel at protection potentials reaching -0.45 V.

3.
Materials (Basel) ; 11(2)2018 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-29401690

RESUMEN

The corrosion behavior of 2A02 Al alloy under 4 mg/cm² NaCl deposition at different temperatures (from 30 to 80 °C) has been studied. This corrosion behavior was researched using mass-gain, scanning electron microscopy-SEM, laser scanning confocal microscopy-LSCM, X-ray photoelectron spectroscopy-XPS and other techniques. The results showed and revealed that the corrosion was maximal at 60 °C after 200 h of exposure. The increase of temperature not only affected the solubility of oxygen gas in the thin film, but also promoted the transport of ions (such as Cl-), and the formation of protective AlO(OH), which further affects the corrosion speed.

4.
J Colloid Interface Sci ; 512: 674-685, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29107918

RESUMEN

The use of epoxy and polyurethane coatings as marine topcoats, have been influenced by their inherent high surface energy property which increases their affinity to water and microorganisms. Thus, their susceptibility to degradation is enhanced. Because of this defect, recently, nanostructured hydrophobic and superhydrophobic polysiloxane coatings are being preferred as topcoats. But the appropriate nanoparticle size and matrix:filler ratio which provide guide for the design of desired topcoats are scarcely available. In view of this, a series of hydrophobic and superhydrophobic coatings were prepared by sol-gel process based on perfluorodecyltrichlorosilane (FDTS), different nanoZnO particles and poly(dimethylsiloxane) (PDMS):nanoZnO ratios. The liquid repellency, surface morphology and roughness of the coatings were conducted by use of contact angle goniometer, field emission scanning electron microscopy and atomic force microscopy, respectively. Additionally, the electrochemical and salt spray corrosion tests were conducted. According to the results, modifications of the coatings showed that anticorrosion performance was considerably influenced by the surface properties which were dependent on nanoZnO size and PDMS:nanoZnO ratio. Remarkably, the optimum effect was observed on the superhydrophobic coating based on 30 nm ZnO and 1:1 ratio. This displayed highest anticorrosion performance, and is therefore recommended as a guide for the design of marine topcoats.

5.
J Colloid Interface Sci ; 484: 220-228, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27614588

RESUMEN

Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications.


Asunto(s)
Dimetilpolisiloxanos/química , Nanocompuestos/química , Acero/química , Óxido de Zinc/química , Corrosión , Fluorocarburos/química , Interacciones Hidrofóbicas e Hidrofílicas , Silanos/química , Propiedades de Superficie
6.
J Adv Res ; 6(2): 203-17, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25750754

RESUMEN

Experimental aspect of the corrosion inhibition potential of adenine (AD), guanine (GU) and, hypoxanthine (HYP) was carried out using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods while the theoretical aspect of the work was carried out by calculations of semi-empirical parameters (for AM1, MNDO, CNDO, PM3 and RM1 Hamiltonians), Fukui functions and inhibitor-metal interaction energies. Results obtained from the experimental studies were in good agreement and indicated that adenine (AD), guanine (GU) and hypoxanthine (HYP) are good adsorption inhibitors for the corrosion of aluminum in solutions of HCl. Data obtained from electrochemical experiment revealed that the studied purines functioned by adsorption on the aluminum/HCl interface and inhibited the cathodic half reaction to a greater extent and anodic half reaction to a lesser extent. The adsorption of the purines on the metal surface was found to be exothermic and spontaneous. Deviation of the adsorption characteristics of the studied purines from the Langmuir adsorption model was compensated by the fitness of Flory Huggins and El Awardy et al. adsorption models. Quantum chemical studies revealed that the experimental inhibition efficiencies of the studied purines are functions of some quantum chemical parameters including total energy of the molecules (TE), energy gap (E L-H), electronic energy of the molecule (EE), dipole moment and core-core repulsion energy (CCR). Fukui functions analysis through DFT and MP2 theories indicated slight complications and unphysical results. However, results obtained from calculated Huckel charges, molecular orbital and interaction energies, the adsorption of the inhibitors proceeded through the imine nitrogen (N5) in GU, emanine nitrogen (N7) in AD and the pyridine nitrogen (N5) in HPY.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA