Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38837720

RESUMEN

Commercialization of rechargeable lithium-ion (Li-ion) batteries has revolutionized the design of portable electronic devices and is facilitating the current transition to electric vehicles. The technological specifications of Li-ion batteries continue to evolve through the introduction of various high-risk liquid electrolyte chemicals, yet critical evaluation of the physical, environmental, and human health hazards of these substances is lacking. Using the GreenScreen for Safer Chemicals approach, we conducted a chemical hazard assessment (CHA) of 103 electrolyte chemicals categorized into seven chemical groups: salts, carbonates, esters, ethers, sulfoxides-sulfites-sulfones, overcharge protection additives, and flame-retardant additives. To minimize data gaps, we focused on six toxicity and hazard data sources, including three empirical and three nonempirical predictive data sources. Furthermore, we investigated the structural similarities among selected electrolyte chemicals using the ChemMine tool and the simplified molecular input line entry system inputs from PubChem to evaluate whether chemicals with similar structures exhibit similar toxicity. The results demonstrate that salts, overcharge protection additives, and flame-retardant additives contain the most toxic components in the electrolyte solutions. Furthermore, carbonates, esters, and ethers account for most flammability hazards in Li-ion batteries. This study supports the complementary use of quantitative structure-activity relationship models to minimize data gaps and inconsistencies in CHA. Integr Environ Assess Manag 2024;00:1-14. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

2.
J Hazard Mater ; 473: 134545, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761760

RESUMEN

Printed circuit boards (PCBs) make up a substantial amount of electronic waste (e-waste) generated annually. Waste PCBs contain high quantities of copper and gold in comparison to natural ores. As such, "urban mining" of waste PCBs to recover these metals is of commercial interest. In this work, we used life cycle assessment to compare the environmental impact of four copper and gold recovery processes. We evaluated pyrometallurgy, chemical leaching, and bioleaching, as well as a hybrid leaching process that uses bioleaching to recover copper and chemical leaching to recover gold. Furthermore, we considered differences in environmental impact based on differences in electricity sources. If electricity comes from fossil fuels, the pyrometallurgical process results in the lowest environmental impact in all impact categories studied. If electricity comes from carbon-free sources, the pyrometallurgical process results in the lowest environmental impact in all categories studied except global warming, where the hybrid leaching process results in the lowest impact. In all cases, metal recovery from waste PCBs leads to lower environmental impact than primary metal production. Our goal is to guide e-waste recyclers towards more environmentally sustainable metal recovery processes and to provide knowledge gaps in the field to guide future research.

3.
Front Public Health ; 10: 954025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958832

RESUMEN

In response to a University of California systemwide initiative to expand the knowledge base of climate change, two half-day workshops were held for faculty in the College of Health Sciences at the UC Irvine. In the first workshop, 20 participants who teach in the Schools of Nursing, Medicine, Pharmacy, and Pharmaceutical Science, or the Program in Public Health convened to explore concepts of sustainability, theoretical models of curriculum integration, challenges to adding new competencies into professional training, and strategies for integrating climate change modules and case studies into the curricula. The second half-day workshop was held a year after the first workshop to review how faculty members have modified their syllabus to integrate climate change information with varying degrees of success. A case study is presented regarding an asynchronous fully online course Introduction to Global Health, which is open to enrollment by students from all campuses of the University of California. The outcomes revealed preferential adoption of models of curriculum integration which minimized disruption of the sequence of topics in pre-existing courses. These include, for example, the use of longitudinal climate datasets for quantitative analysis of disease outcomes, and description of episodic events involving extreme weather conditions to explore differences in social determinants of vulnerability to climate change impacts in different populations. Integration of climate change as a distinct topic seems easier in elective courses in comparison with required courses designed to cover pre-established professional knowledge, competencies, and skills. The emergent requirement for interprofessional training in the health sciences provides an opportunity for the development of a cross-cutting competency domain including climate change as a unifying theme in a stand-alone course or set of courses in a sequenced model of curriculum integration.


Asunto(s)
Cambio Climático , Curriculum , Humanos
5.
J Hazard Mater ; 437: 129301, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35716560

RESUMEN

Batteries are important for promoting renewable energy, but, like most engineered products, they contain multiple hazardous materials. The purpose of this study is to evaluate industrial-scale batteries using GreenScreen® for Safer Chemicals, an established chemical hazard assessment (CHA) framework, and to develop a systematic, transparent methodology to quantify the CHA results, harmonize them, and aggregate them into single-value hazard scores, which can facilitate quantitative comparison and a robust evaluation of data gaps, inconsistencies, and uncertainty through the implementation of carefully selected scenarios and stochastic multicriteria acceptability analysis (SMAA). Using multiple authoritative toxicity data sources, six battery products are evaluated: three lithium-ion batteries (lithium iron phosphate, lithium nickel cobalt manganese hydroxide, and lithium manganese oxide), and three redox flow batteries (vanadium redox, zinc-bromine, and all-iron). The CHA results indicate that many materials in these batteries, including reagents and intermediates, inherently exhibit high hazard; therefore, safer materials should be identified and considered in future designs. The scenario analysis and SMAA, combined, provide a quantitative evaluation framework to support the decision-making needed to compare alternative technologies. Thus, this study highlights specific strategies to reduce the use of hazardous materials in complex engineered products before they are widely used in this rapidly-expanding industry sector.

6.
One Health ; 14: 100386, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35445151

RESUMEN

Scientific evidence for the urgency of curbing the emergence and spread of antimicrobial resistance is incontrovertible. Yet, the translation of knowledge into effective design and implementation of action plans is hampered by gaps in perception, attitudes and practices in the human health, agriculture, and environmental sectors. To fill these gaps in regions where the disease burden attributable to antimicrobial resistance is heaviest, a cadre of One Health Stewards equipped with strategies to translate and meld global and local evidence for knowledge dissemination is deemed necessary. This opinion articulates a case for cultivating and deploying One Health Antibiotic Stewards according to specific actions within the environmental context of antibiotic resistance.

7.
Waste Manag ; 141: 154-162, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35123249

RESUMEN

Waste printed circuit boards (WPCBs) contain valuable material resources and hazardous substances, thereby posing a challenge for sustainable resource recovery and environmental protection initiatives. Overcoming this challenge will require mapping the toxic footprint of WPCBs to specific materials and substances used in manufacturing electronic components (ECs). Therefore, this work collected 50 EC specimens from WPCBs in five ubiquitous consumer products, such as television, refrigerator, air conditioner, washing machine and computer. The work extracted and analyzed metal contents and used leachability assessments based on tests adopted by the regulatory policies from China and the United States. The work found that copper and iron are the most abundant constituents in ECs, with concentrations ranging 5.90-796.62 g/kg and 0-831.53 g/kg, respectively; whereas abundance of precious metal content is in the order of silver > gold > palladium > platinum, with silver concentration ranging 15-5290 mg/kg. The content of marginally-regulated toxic substance arsenic ranged 0-9700 mg/kg; whereas fully regulated toxic metals such as chromium, lead and mercury did not exceed the thresholds set by China and US standards. The work found new toxic threats from arsenic and selenium leached from 20 of 50 ECs exceeding regulatory standards. These results will aid manufacturers and recyclers in protecting workers' health and environmental quality from arsenic and selenium pollution, and should initiate discussion about regulating these toxic components as part of a comprehensive program to reduce the toxic footprint of electronic products.

9.
Artículo en Inglés | MEDLINE | ID: mdl-32290320

RESUMEN

To reduce the burden of chronic disease, the Centers for Disease Control and Prevention (CDC) funded the Orange County Partnerships to Improve Health (OC-PICH) project in Orange County, California. One of the strategies included adding outdoor exercise equipment (OEE) in two parks in Garden Grove and Anaheim. Using a quasi-experimental pre-post design, we evaluated park users' physical activity levels before and after OEE installation using the System for Observing Play and Recreation in Communities (SOPARC). The OEE was installed along a walking path in Edison Park (Anaheim) and grouped within a single area (a "fitness zone") in Garden Grove Park. In both parks, there were significantly greater odds of high-intensity physical activity overall after the installation-19% higher odds in Anaheim, and 23% higher odds in Garden Grove. However, the fitness zone area in Garden Grove had substantially higher odds of increased physical activity post-intervention (OR = 5.29, CI: 3.76-7.44, p < 0.001). While the increases in physical activity levels are consistent with past studies that link OEE to higher levels of physical activity among park users, our findings also suggest that the location and placement of equipment within a park may be an important factor to consider when improving park amenities for physical activity.


Asunto(s)
Ejercicio Físico , Envío de Mensajes de Texto , Adolescente , Adulto , California , Niño , Planificación Ambiental , Femenino , Jardinería , Humanos , Masculino , Parques Recreativos , Instalaciones Públicas , Recreación , Caminata , Adulto Joven
10.
J Hazard Mater ; 382: 121038, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31450210

RESUMEN

Waste printed circuit boards mounted with electronic components (WPCB-ECs) are generated from electronic waste dismantling and recycling process. Air-borne pollutants, including particulate matter (PM) and volatile organic compounds (VOCs), can be released during thermal treatment of WPCB-CEs. In this study, organic substances from WPCB-ECs were pyrolyzed by both thermo-gravimetric analysis (TGA) and in a quartz tube furnace. We discovered that board resin and solder coating were degraded in a one-stage process, whereas capacitor scarfskin and wire jacket had two degradation stages. Debromination of brominated flame retardants occurred, and HBr and phenol were the main products during TGA processing of board resin. Dehydrochlorination occurred, and HCl, benzene and toluene were detected during the pyrolysis of capacitor scarfskin. Benzene formation was found only in the first degradation stage (272-372 °C), while toluene was formed both in the two degradation stages. PM with bimodal mass size distributions at diameters of 0.45-0.5 and 4-5 µm were emitted during heating WPCB-ECs. The PM number concentrations were highest in the size ranges of 0.3-0.35 µm and 1.6-2 µm. The research produced new data on pollutant emissions during thermal treatment of WPCB-ECs, and information on strategies to prevent toxic exposures that compromise the health of recyclers.

11.
One Health Outlook ; 2: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33829133

RESUMEN

BACKGROUND: Antibiotic resistance is a major contributing factor to global morbidity and mortality and is associated with inappropriate medication use. However, the level of antibiotic consumption and knowledge about antibiotic resistance in Ghana is inadequately quantified. Our study identifies strategies for improved stewardship of antibiotics to prevent the proliferation of resistant pathogens by assessing the level of antibiotic knowledge, attitudes, and consumption behaviors by region, gender, age, and education in rural and urban Ghana. METHODS: A cross-sectional study was conducted in 12 communities in the urban Greater Accra and rural Upper West regions of Ghana. A questionnaire survey was administered to 400 individuals aged 18 years and older in selected locations during September-October 2018 to collect data on individual knowledge, attitudes, and practices concerning antibiotics and antibiotic resistance. Multivariate analysis was used to investigate the association between demographic characteristics and knowledge, attitudes, and related behaviors. RESULTS: Over 30% (125/400) had not received a doctor's prescription during their last illness. Seventy percent (278/400) had taken at least one antibiotic in the year prior to the survey. The top five frequently used antibiotics were Amoxicillin, Amoxicillin-clavulanic acid, Ampicillin, Ciprofloxacin, and Metronidazole. Women and older adults had higher knowledge compared to their respective counterparts (p < 0.01). Furthermore, prudent antibiotic use was significantly more prevalent in women than men (p < 0.05). Although no regional differences were found in overall knowledge, compared to urban residents, individuals residing in rural settings exhibited higher knowledge about the ineffectiveness of antibiotics for viruses like the cold and HIV/AIDS (p < 0.001). Two hundred and fifty-two (63%) respondents were unaware of antibiotic resistance. There was generally a low level of self-efficacy among participants regarding their role in preserving the effectiveness of antibiotics. CONCLUSION: Antibiotic knowledge, attitudes, and use varied significantly across demographics, suggesting a context-specific approach to developing effective community interventions.

12.
Artículo en Inglés | MEDLINE | ID: mdl-31491843

RESUMEN

Valley Fever, or Coccidioidomycosis, a fungal respiratory disease, is prevalent with increasing incidence in the Southwestern United States, especially in the central region of California. Public health agencies in the region do not have a consistent strategy for communication and health promotion targeting vulnerable communities about this climate-sensitive disease. We used the behavior adaptation communication model to design and conduct semi-structured interviews with representatives of public health agencies in five California counties: Fresno, Kern, Kings, San Luis Obispo, and Tulare County. While none of the agencies currently include climate change information into their Valley Fever risk messaging, the agencies discuss future communication methods similar to other health risk factors such as poor air quality days and influenza virus season. For political reasons, some public health agencies deliberately avoided the use of climate change language in communicating health risk factors to farmers who are particularly vulnerable to soil and dust-borne fungal spores. The effectiveness of health communication activities of the public health agencies has not been measured in reducing the prevalence of Valley Fever in impacted communities. Given the transboundary nature of climate influence on Valley Fever risk, a concerted and consistent health communication strategy is expected to be more effective than current practices.


Asunto(s)
Clima , Coccidioidomicosis/epidemiología , California/epidemiología , Coccidioidomicosis/prevención & control , Humanos , Salud Pública , Factores de Riesgo
13.
J Hazard Mater ; 380: 120898, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31330384

RESUMEN

Mobile phones and various electronic products contribute to the world's fastest-growing category of hazardous waste with international repercussions. We investigated the trends in potential human health impacts and ecotoxicity of waste mobile phones through quantitative life cycle impact assessment (LCIA) methods and regulatory total threshold limit concentrations. A market-dominant sample of waste basic phones and smartphones manufactured between 2001 and 2015, were analyzed for toxicity trends based on 19 chemicals. The results of the LCIA (using USEtox model) show an increase in the relative mass of toxic materials over the 15-year period. We found no significant changes in the use of toxic components in basic phones, whereas smartphones contained a statistically significant increase in the content of toxic materials from 2006 to 2015. Nickel contributed the largest risk for carcinogens in mobile phones, but the contributions of lead and beryllium were also notable. Silver, zinc and copper contents were associated with non-cancer health risks. Copper components at 45,818-77,938 PAF m3/kg dominated ecotoxicity risks in mobile phones. Overall, these results highlight the increasing importance of monitoring trends in materials use for electronic product manufacturing and electronic-waste management processes that should prevent human and environmental exposures to toxic components.


Asunto(s)
Teléfono Celular , Residuos Electrónicos/análisis , Metales/análisis , Humanos , Metales/toxicidad , Medición de Riesgo
14.
Sci Total Environ ; 662: 530-536, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30699373

RESUMEN

Heating processes for the removal of electronic components from waste printed circuit boards (WPCBs) is an important step in the chain of electronic waste recycling, and toxic fumes are generated during the de-soldering process, causing environmental pollution and posing health risks for the workers. This study is aimed to characterize emission and deposition fluxes of respirable particulate matter (PM), and assess exposure of workers to particle-bound polybrominated diphenyl ethers (PBDEs). An electrical low-pressure impactor was used to measure the real-time PM concentrations inside and outside the hood during the WPCBs de-soldering process. The results show that PM mass concentration inside the hood (204 mg/m3) was significantly higher than outside the hood (9.4 mg/m3), representing 95.4% PM removal by the hood. According to the International Commission on Radiological Protection model, the total deposition fluxes of PM in head airways region, tracheobronchial region, and alveolar region were determined as 1930, 74.0, and 123 µg/h, respectively. The deposition flux for coarse particles (2.5-10 µm) in the head airways was the largest (1830 µg/h), accounting for 86.1% of total PM deposited in respiratory system. The ∑8PBDEs concentration in PM10 inside the WPCBs de-soldering workshop was 20,300 pg/m3, and the ∑8PBDEs inhalation exposure for the worker was 1.46 ng/kg/day. This study improves understanding of PM emission mechanisms and provides fundamental data for health assessments during WPCBs de-soldering process.

15.
Prev Chronic Dis ; 15: E101, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30095404

RESUMEN

INTRODUCTION: Increases in physical activity can lead to decreases in the prevalence of chronic diseases. Parks provide an ideal setting for physical activity. We investigated the effect of a fitness equipment installation on the intensity of park users' physical activity at a community park. METHODS: We used the System for Observing Play and Recreation in a Community to record physical activity in Eastgate Park in Garden Grove, California, in August 2015 (preintervention [n = 1,650 person-periods]) and in February 2016 (postintervention [n = 1,776 person-periods]). We quantified physical activity in target areas of the park during 15-minute observation periods in 2 ways: 1) we categorized each user's activity level during the period (sedentary, walking, vigorous), and 2) we converted activity levels to numeric metabolic equivalent task (MET) scores and calculated the period-average score across users. We used mixed-effects regression models to assess 1) the proportional odds of higher activity level at postintervention and 2) the association between intervention status (pre vs post) and mean period-average MET scores. RESULTS: In the immediate zone around the fitness equipment, the odds ratio for a higher activity level was 1.58 (95% confidence interval [CI], 1.14-2.18; P = .006) and the mean period-average MET score was 0.33 (95% CI, -0.07 to 0.74; P = .11) units higher at postintervention. Across the park as a whole, the odds ratio for a higher activity level was 1.41 (95% CI, 1.21-1.63; P < .001), and the mean period-average MET score was 0.34 (95% CI, 0.12-0.56; P = .003) units higher at postintervention. CONCLUSION: Installing fitness zones appears to be an effective intervention for increasing physical activity of park users. Further studies need to be conducted to understand the sustained impact of fitness zones over time.


Asunto(s)
Entorno Construido , Ejercicio Físico , Parques Recreativos , Adolescente , Adulto , Anciano , California , Niño , Femenino , Promoción de la Salud/métodos , Humanos , Masculino , Persona de Mediana Edad , Aptitud Física , Análisis de Regresión , Adulto Joven
17.
Nature ; 548(7669): 523, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28858306
18.
Sci Total Environ ; 609: 272-276, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28750230

RESUMEN

Human exposure to flame retardants occurs in microenvironments due to their ubiquitous presence in consumer products and building materials. Recent research suggests higher levels of exposure through elevated surface dust (ESD) compared to floor dust (FD). However, it is unclear whether this pattern is consistent in different microenvironments beyond the home. We hypothesized that time spent in various microenvironments will significantly modify the pattern of human exposure to flame retardant chemicals in ESD and FD. We tested this hypothesis by collecting time activity diaries from 43 participants; and by estimating human exposure to 10 polybrominated diphenyl ether and 8 non-polybrominated diphenyl ether flame retardant chemicals, based on chemical concentrations measured in different microenvironments visited by the participants. The results of paired t-tests show that, with some notable exceptions, estimates of human exposure to most chemicals through ESD are statistically significantly higher for ∑PBDE (p=0.00) and ∑non-PBDEs (p=0.00) than through FD. This study reinforces the need to integrate temporal, locational, and elevation dimensions in assessing human exposure to potentially toxic flame retardant chemicals.


Asunto(s)
Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Polvo , Humanos , Análisis Espacio-Temporal
19.
Disaster Med Public Health Prep ; 11(5): 610-611, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28330523

RESUMEN

Disaster Medicine is a relatively new multidisciplinary field of science with clear public health implications as it focuses on improving outcomes for populations rather than for individual patients. As with any other scientific discipline, the goal of public health and disaster research is to create new knowledge and transfer evidence-based data to improve public health. The phrase "lessons learned" has crept into the disaster lexicon but must be permanently erased as it has no place in the scientific method. The second edition of Koenig and Schultz's Disaster Medicine: Comprehensive Principles & Practice adds to the growing knowledge base of this emerging specialty and explains why "lessons learned" should be discarded from the associated vocabulary. (Disaster Med Public Health Preparedness. 2017;11:610-611).


Asunto(s)
Planificación en Desastres/métodos , Salud Pública/educación , Investigación Biomédica Traslacional/métodos , Planificación en Desastres/normas , Humanos , Salud Pública/métodos , Enseñanza/psicología , Enseñanza/tendencias , Investigación Biomédica Traslacional/normas
20.
Sci Total Environ ; 574: 837-846, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27665444

RESUMEN

There is accumulating evidence that the emerging burden of global climate change threatens the fidelity of routine indicators for disease detection and management of risks to public health. The threat partially reflects the conservative character of the health sector and the reluctance to adopt new indicators, despite the growing awareness that existing environmental health indicators were developed to respond to risks that may no longer be relevant, and are too simplistic to also act as indicators for newer global-scale risk factors. This study sought to understand the scope of existing health indicators, while aiming to discover new indicators for building resilience against three climate sensitive diseases (cerebro spinal meningitis, malaria and diarrhea). Therefore, new potential indicators derived from human and biophysical origins were developed to complement existing health indicators, thereby creating climate-sensitive battery of robust composite indices of resilience in health planning. Using Ghana's health sector as a case study systematic international literature review, national expert consultation, and focus group outcomes yielded insights into the relevance, sensitivity and impacts of 45 indicators in 11 categories in responding to climate change. In total, 65% of the indicators were sensitive to health impacts of climate change; 24% acted directly; 31% synergistically; and 45% indirectly, with indicator relevance strongly associated with type of health response. Epidemiological indicators (e.g. morbidity) and health demographic indicators (e.g. population structure) require adjustments with external indicators (e.g. biophysical, policy) to be resilient to climate change. Therefore, selective integration of social and ecological indicators with existing public health indicators improves the fidelity of the health sector to adopt more robust planning of interdependent systems to build resilience. The study highlights growing uncertainties in translating research into protective policies when new indicators associated with non-health sources are needed to complement existing health indicators that are expected to respond to climate change.


Asunto(s)
Cambio Climático , Salud Ambiental , Salud Pública , Ghana , Humanos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA