RESUMEN
SUMMARY: The anterior cruciate ligament (ACL) is a ligament that mainly controls the anterior and rotational mobility of the knee joint, and its surface is covered by a synovial membrane with large number of blood vessels. In general, nutritional supply to the ligament is from many capillaries in the adjacent synovium. However, statistical studies of the capillaries distributed to the ACL are insufficient. In this study, we examined cross-sectional histological images of the femoral attachment (femoral level), middle level of the tendon (middle level), and tibial attachment (tibial level) of the ACL and statistically analyzed blood capillary distribution among the three levels. The ACLs of 10 cadavers were divided into 5 equal sections, and 4mm-thick paraffin sections were made at the femoral level, middle level, and tibial level, and then hematoxylin-eosin (HE) staining were performed. The area of each transverse section was measured using Image-J 1.51n (U. S. National Institutes of Health, Bethesda, MD, USA). Fiber bundles of the ACL were relatively small and sparse in cross-sectional area at the femoral level and became larger and denser toward the tibial level. Many blood levels. The synovium at the attachment of ACL covered the surface of the fiber bundle and also penetrated deeply between the fiber bundles. In particular, the blood capillaries were densely distributed in the synovium at the femoral attachment rather than another two levels. Indeed, the number of capillaries were also most abundant in the femoral level. The cross-sectional ACL area at the femoral level is significantly small, however, the blood capillaries were most abundant. Therefore, when the ACL is injured, its reconstruction with preservation of the femoral ligamentous remnant may be clinically useful for remodeling of the grafted tendon.
El ligamento cruzado anterior (LCA) es un ligamento que controla principalmente la movilidad anterior y rotacional de la articulación de la rodilla, y su superficie está cubierta por una membrana sinovial con gran cantidad de vasos sanguíneos. En general, el suministro de nutrientes al ligamento proviene de muchos capilares en la sinovial adyacente. Sin embargo, los estudios estadísticos de los capilares distribuidos en el LCA son insuficientes. En este estudio, examinamos imágenes histológicas trans- versales de la inserción femoral (nivel femoral), el nivel medio del tendón (nivel medio) y la inserción tibial (nivel tibial) del LCA y analizamos estadísticamente la distribución de los capilares sanguíneos entre los tres niveles. Los LCA de 10 cadáveres se dividieron en 5 secciones iguales y se realizaron cortes en parafina de 4 µm de espesor a nivel femoral, medio y tibial, y luego se realizó tinción con hematoxilina-eosina (HE). El área de cada sección transversal se midió utilizando Image-J 1.51n (Institutos Nacionales de Salud de EE. UU., Bethesda, MD, EE. UU.). Los haces de fibras del LCA eran relativamente pequeños y escasos en el área de la sección transversal a nivel femoral y se hicieron más grandes y más densos hacia el nivel tibial. La membrana sinovial en la unión del LCA cubría la superficie del haz de fibras y también penetraba profundamente entre entre los haces de fibras. En particular, los capilares sanguíneos estaban densamente distribuidos en la unión femoral de la sinovial respecto a los otros dos niveles. De hecho, el número de capilares también fue más abundante a nivel femoral. El área transversal del LCA a nivel femoral era significativamente pequeña, sin embargo, los capilares sanguíneos fueron los más abundantes. Por lo tanto, cuando hay una lesión del LCA su reconstrucción con preservación del ligamento femoral remanente puede ser clínicamente útil para remodelar el tendón injertado.
Asunto(s)
Humanos , Masculino , Femenino , Anciano , Anciano de 80 o más Años , Capilares/anatomía & histología , Ligamento Cruzado Anterior/irrigación sanguínea , Fémur/irrigación sanguínea , Membrana Sinovial/irrigación sanguínea , Tibia/irrigación sanguínea , CadáverRESUMEN
The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.