Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Mater ; 17(6)2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36384043

RESUMEN

Osteocytes are considered the primary mechanical sensor in bone tissue and orchestrate the coupled bone remodeling activity of adjacent osteoblast and osteoclast cells.In vivoinvestigation of mechanically induced signal propagation through networks of interconnected osteocytes is confounded by their confinement within the mineralized bone matrix, which cannot be modeled in conventional culture systems. In this study, we developed a new model that mimics thisin vivoconfinement using gelatin methacrylate (GelMA) hydrogel or GelMA mineralized using osteoblast-like model cells. This model also enables real-time optical examination of osteocyte calcium (Ca2+) signaling dynamics in response to fluid shear stimuli cultured under confined conditions. Using this system, we discovered several distinct and previously undescribed patterns of Ca2+responses that vary across networks of interconnected osteocytes as a function of space, time and connectivity. Heterogeneity in Ca2+signaling may provide new insights into bone remodeling in response to mechanical loading. Overall, such a model can be extended to study signaling dynamics within cell networks exposed to flow-induced mechanical stimuli under confined conditions.


Asunto(s)
Osteoblastos , Osteocitos , Osteoclastos , Matriz Ósea , Calcio , Estrés Mecánico
2.
J Funct Biomater ; 11(1)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963629

RESUMEN

Matrix-assisted chondrocyte transplantation (MACT) is of great interest for the treatment of patients with cartilage lesions. However, the roles of the matrix properties in modulating cartilage tissue integration during MACT recovery have not been fully understood. The objective of this study was to uncover the effects of substrate mechanics on the integration of implanted chondrocyte-laden hydrogels with native cartilage tissues. To this end, agarose hydrogels with Young's moduli ranging from 0.49 kPa (0.5%, w/v) to 23.08 kPa (10%) were prepared and incorporated into an in vitro human cartilage explant model. The hydrogel-cartilage composites were cultivated for up to 12 weeks and harvested for evaluation via scanning electron microscopy, histology, and a push-through test. Our results demonstrated that integration strength at the hydrogel-cartilage interface in the 1.0% (0.93 kPa) and 2.5% (3.30 kPa) agarose groups significantly increased over time, whereas hydrogels with higher stiffness (>8.78 kPa) led to poor integration with articular cartilage. Extensive sprouting of extracellular matrix in the interfacial regions was only observed in the 0.5% to 2.5% agarose groups. Collectively, our findings suggest that while neocartilage development and its integration with native cartilage are modulated by substrate elasticity, an optimal Young's modulus (3.30 kPa) possessed by agarose hydrogels is identified such that superior quality of tissue integration is achieved without compromising tissue properties of implanted constructs.

3.
Methods Mol Biol ; 2045: 107-117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30484146

RESUMEN

Multipotent mesenchymal stem cells (MSCs) are an attractive candidate for regeneration of damaged cells, tissues, and organs. Due to limited availabilities, MSC populations must be rapidly expanded to satisfy clinical needs. However, senescence attributed to extensive in vitro expansion compromises the regenerative and therapeutic potential of MSCs. In this chapter, we describe a step-by-step protocol that aims to induce adipogenic and osteogenic differentiation of in vitro aged human MSCs and highlight noteworthy issues that may arise during the process.


Asunto(s)
Adipocitos/citología , Adipogénesis , Diferenciación Celular/efectos de los fármacos , Senescencia Celular/fisiología , Células Madre Mesenquimatosas/citología , Osteocitos/citología , Osteogénesis , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Células de la Médula Ósea/citología , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteocitos/metabolismo , Osteogénesis/efectos de los fármacos , Flujo de Trabajo
4.
Stem Cell Res Ther ; 9(1): 131, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29751774

RESUMEN

BACKGROUND: Adult mesenchymal stem cells (MSCs) hold great promise for regenerative medicine because of their self-renewal, multipotency, and trophic and immunosuppressive effects. Due to the rareness and high heterogeneity of freshly isolated MSCs, extensive in-vitro passage is required to expand their populations prior to clinical use; however, senescence usually accompanies and can potentially affect MSC characteristics and functionality. Therefore, a thorough characterization of the variations in phenotype and differentiation potential of in-vitro aging MSCs must be sought. METHODS: Human bone marrow-derived MSCs were passaged in vitro and cultivated with either DMEM-based or αMEM-based expansion media. Cells were prepared for subculture every 10 days up to passage 8 and were analyzed for cell morphology, proliferative capacity, and surface marker expression at the end of each passage. The gene expression profile and adipogenic and osteogenic differentiation capability of MSCs at early (passage 4) and late (passage 8) passages were also evaluated. RESULTS: In-vitro aging MSCs gradually lost the typical fibroblast-like spindle shape, leading to elevated morphological abnormality and inhomogeneity. While the DMEM-based expansion medium better facilitated MSC proliferation in the early passages, the cell population doubling rate reduced over time in both DMEM and αMEM groups. CD146 expression decreased with increasing passage number only when MSCs were cultured under the DMEM-based condition. Senescence also resulted in MSCs with genetic instability, which was further regulated by the medium recipe. Regardless of the expansion condition, MSCs at both passages 4 and 8 could differentiate into adipocyte-like cells whereas osteogenesis of aged MSCs was significantly compromised. For osteogenic induction, use of the αMEM-based expansion medium yielded longer osteogenesis and better quality. CONCLUSIONS: Human MSCs subjected to extensive in-vitro passage can undergo morphological, phenotypic, and genetic changes. These properties are also modulated by the medium composition employed to expand the cell populations. In addition, adipogenic potential may be better preserved over osteogenesis in aged MSCs, suggesting that MSCs at early passages must be used for osteogenic differentiation. The current study presents valuable information for future basic science research and clinical applications leading to the development of novel MSC-based therapeutic strategies for different diseases.


Asunto(s)
Envejecimiento , Células Madre Mesenquimatosas/metabolismo , Adulto , Diferenciación Celular , Proliferación Celular , Humanos , Masculino , Fenotipo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA