Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oecologia ; 154(1): 207-17, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17641918

RESUMEN

The variation of plant water use efficiency (WUE) with water availability has two interacting components: a plastic response, evident when individuals of the same genotype are compared (e.g. wet versus dry years), and an interspecific response, evident when different species living in habitats with different water availability are compared. We analysed the WUE of 25 Patagonian species that belong to four life forms (grasses, shrubs, annual herbs and perennial herbs) in relation to the climatic conditions of 2 years and the mean historic water availability experienced by each species. To estimate water availability, we calculated the effective soil water potential (EWP) of each species, based on available information about soil water dynamics, phenology and root system structure. To estimate WUE, we used isotopic discrimination of leaf C (Delta(13)C) and mean annual water vapour difference between leaves and atmosphere (Deltae) measured in situ. For the plastic response, for every species and life form, WUE increased from the dry to the wet year. We hypothesize that photosynthesis was less nutrient limited in the wet than in the dry year, facilitating higher net photosynthesis rates per unit of stomatal conductance in the wet year. For the interspecific response, WUE was lower in species native to drier habitats than in species native to wetter habitats. This response was mostly accounted for by a decrease in Deltae with EWP. Annual herbs, which avoid drought in time (they have the earliest growth cycle), and shrubs, which avoid drought in space (they have the deepest roots), showed the highest EWP and WUE. We conclude that the conventional wisdom which states that the highest WUE occurs within a species during the driest years, and among species in the driest habitats, does not always hold true, and that co-existing life forms drastically differ in water availability and water economy.


Asunto(s)
Plantas/metabolismo , Suelo/análisis , Agua/química , Agua/metabolismo , Argentina , Dipiridamol/análogos & derivados , Estaciones del Año
2.
Science ; 287(5459): 1770-4, 2000 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-10710299

RESUMEN

Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.


Asunto(s)
Ecosistema , Agricultura , Animales , Atmósfera , Dióxido de Carbono , Clima , Agua Dulce , Modelos Biológicos , Nitrógeno
3.
Oecologia ; 108(2): 279-284, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28307840

RESUMEN

Many studies have analysed plant responses to flooding or drought separately, without addressing the relations between plant resistance to each of these factors. In this paper, we compare the responses to drought and flooding under glasshouse conditions of three populations of Paspalum dilatatum, a perennial C4 grass dominant at different positions along a topographic gradient in the flooding pampa of Argentina. Our results showed that flooding effects on yield were negative on an upland, null on an intermediate, and positive on a lowland population, whereas drought reduced yield equally across populations, showing that resistance to flooding was not related to resistance to drought at a population level. Drought decreased height and aerenchyma, and increased the proportion of roots, while flooding had opposite effects on these traits. The responses of the single clones that made up each population showed a positive relation between the resistances to both factors: along the ecocline formed by 58 clones, those more resistant to drought were also more resistant to flooding. In addition, the combined resistance of each clone to both factors was negatively related to yield at field capacity, (i.e. the most resistant clones were less productive) and unrelated to the proportion of roots and aerenchyma. This result agrees with predictions of Grime's plant strategy theory and differs from a few previous studies, which showed negative relations between the resistances to flooding and drought among genera and species.

4.
Nature ; 356(6366): 234-6, 1992 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-1552941

RESUMEN

All significant properties of the herbivore trophic level, including biomass, consumption and productivity, are significantly correlated with primary productivity across a broad range of terrestrial ecosystems. Here we show that livestock biomass in South American agricultural ecosystems across a 25-fold gradient of primary productivity exhibited a relationship with a slope essentially identical to unmanaged ecosystems, but with a substantially greater y-intercept. Therefore the biomass of herbivores supported per unit of primary productivity is about an order of magnitude greater in agricultural than in natural ecosystems, for a given level of primary production. We also present evidence of an increase in livestock body size with primary productivity, a pattern previously characterized in natural ecosystems. To our knowledge this is the first quantitative documentation at a regional scale of the impact of animal husbandry practices, such as herding, stock selection and veterinary care, on the biomass and size-structure of livestock herds compared with native herbivores.


Asunto(s)
Crianza de Animales Domésticos , Bovinos , Ecología , Ovinos , Agricultura , Alimentación Animal , Animales , Argentina , Poaceae , Uruguay
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA