Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38475504

RESUMEN

Since Astragalus is a genus with many important medicinal plant species, the present work aimed to investigate the phytochemical composition and some biological activities of Astragalus gymnolobus. The methanolic fractions of four organs (stems, flowers, leaves, root and whole plant) were quantified and identified by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS) analysis. Hesperidin, hyperoside, p-hydroxybenzoic acid, protocatechuic acid and p-coumaric acid were identified as main compounds among the extracts. Among all cells, leaf methanol (Lm) extract had the highest cytotoxic effect on HeLa cells (IC50 = 0.069 µg/mL). Hesperidin, the most abundant compound in A. gymnolobus extract, was found to show a strong negative correlation with the cytotoxic effect observed in HeLa cells according to Pearson correlation test results and to have the best binding affinity to targeted proteins by docking studies. The antimicrobial activity results indicated that the most susceptible bacterium against all extracts was identified as Streptococcus pyogenes with 9-11 mm inhibition zone and 8192 mg/mL MIC value. As a result of the research, it was suggested that A. gymnolobus could be considered as a promising source that contributes to the fight against cancer.

2.
Antibiotics (Basel) ; 12(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37107101

RESUMEN

Infections caused by resistant strains of Acinetobacter baumannii are now a global problem that requires the immediate development of new antimicrobial drugs. Combination therapy is one of the strategies used to solve this problem. Based on this information, the purpose of this study was to determine whether quercetin (QUE), in combination with three antibiotics, is effective against colistin-resistant A. baumannii strains (ColR-Ab). The effects of the combination of QUE with colistin (COL), amikacin (AMK), and meropenem (MEM) were evaluated according to the checkerboard synergy test. The combinations of QUE + COL and QUE + AMK showed synergistic activity on ColR-Ab strains with FICI values in the range of 0.1875-0.5 and 0.1875-0.2825, respectively. A 4- to 16-fold decrease in COL MIC and a 16- to 64-fold decrease in AMK MIC values were detected. Synergistic activity was confirmed by the time-kill test, and these combinations were found to be bactericidal at the end of 24 h. According to spectrophotometric measurements, the combinations of QUE + COL and QUE + AMK induced membrane damage, leading to the leakage of nucleic acids. Cell lysis and cell death were confirmed with SEM observations. The detected synergy offers an opportunity for the future development of treatment strategies for potential infections caused by ColR-Ab strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA