Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Microbiol ; 121: 104520, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637082

RESUMEN

Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.


Asunto(s)
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Cerveza/microbiología , Bacterias/genética , Plásmidos , Saccharomyces/genética , Metagenoma , Metagenómica , Enterobacteriaceae/genética
2.
STAR Protoc ; 4(3): 102417, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37405923

RESUMEN

The analysis of metagenomic data obtained via high-throughput DNA sequencing is primarily carried out by a dedicated binning process involving clustering contigs, presumably belonging to the same species. Here, we present a protocol for improving the quality of binning using BinSPreader. We describe steps for typical metagenome assembly and binning workflow. We then detail binning refining, its variants, output, and possible caveats. This protocol optimizes the process of reconstructing more complete genomes of microorganisms that make up the metagenome. For complete details on the use and execution of this protocol, please refer to Tolstoganov et al.1.


Asunto(s)
Metagenoma , Metagenómica , Metagenoma/genética , Análisis de Secuencia de ADN/métodos , Metagenómica/métodos , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Genes (Basel) ; 13(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36140737

RESUMEN

The extant reptiles are one of the most diverse clades among terrestrial vertebrates and one of a few groups with instances of parthenogenesis. Due to the hybrid origin of parthenogenetic species, reference genomes of the parental species as well as of the parthenogenetic progeny are indispensable to explore the genetic foundations of parthenogenetic reproduction. Here, we report on the first genome assembly of rock lizard Darevskia valentini, a paternal species for several parthenogenetic lineages. The novel genome was used in the reconstruction of the comprehensive phylogeny of Squamata inferred independently from 7369 trees of single-copy orthologs and a supermatrix of 378 conserved proteins. We also investigated Hox clusters, the loci that are often regarded as playing an important role in the speciation of animal groups with drastically diverse morphology. We demonstrated that Hox clusters of D. valentini are invaded with transposons and contain the HoxC1 gene that has been considered to be lost in the amniote ancestor. This study provides confirmation for previous works and releases new genomic data that will contribute to future discoveries on the mechanisms of parthenogenesis as well as support comparative studies among reptiles.


Asunto(s)
Lagartos , Animales , Genoma/genética , Lagartos/genética , Repeticiones de Microsatélite , Partenogénesis/genética , Filogenia
4.
iScience ; 25(8): 104770, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35992057

RESUMEN

Despite the recent advances in high-throughput sequencing, metagenome analysis of microbial populations still remains a challenge. In particular, the metagenome-assembled genomes (MAGs) are often fragmented due to interspecies repeats, uneven coverage, and varying strain abundance. MAGs are constructed via a binning process that uses features of input data in order to cluster long contigs presumably belonging to the same species. In this work, we present BinSPreader-a binning refiner tool that exploits the assembly graph topology and other connectivity information to refine binning, correct binning errors, and propagate binning to shorter contigs. We show that BinSPreader could increase the completeness of the bins without sacrificing the purity and could predict contigs belonging to several MAGs. BinSPreader is effective in binning shorter contigs that often contain important conservative sequences that might be of great interest to researchers.

5.
Data Brief ; 39: 107685, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34917712

RESUMEN

Darevskia rock lizards include 29 sexual and seven parthenogenetic species of hybrid origin distributed in the Caucasus. All seven parthenogenetic species of the genus Darevskia were formed as a result of interspecific hybridization of only four sexual species. It remains unknown what are the main advantages of interspecific hybridization along with switching on parthenogenetic reproduction in evolution of reptiles. Data on whole transcriptome sequencing of parthenogens and their parental ancestors can provide value impact in solving this problem. Here we have sequenced ovary tissue transcriptomes from unisexual parthenogenetic lizard D. unisexualis and its parental bisexual ancestors to facilitate the subsequent annotation and to obtain the collinear characteristics for comparison with other lizard species. Here we report generated RNAseq data from total mRNA of ovary tissues of D. unisexualis, D. valentini and D. raddei with 58932755, 51634041 and 62788216 reads. Obtained RNA reads were assembled by Trinity assembler and 95141, 62123, 61836 contigs were identified with N50 values of 2409, 2801 and 2827 respectively. For further analysis top Gene Ontology terms were annotated for all species and transcript number was calculated. The raw data were deposited in the NCBI SRA database (BioProject PRJNA773939). The assemblies are available in Mendeley Data and can be accessed via doi:10.17632/rtd8cx7zc3.1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA