Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Nat Protoc ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266725

RESUMEN

Perfusable hydrogels have garnered substantial attention in recent years for the fabrication of microphysiological systems. However, current methodologies to fabricate microchannels in hydrogel platforms involve sophisticated equipment and techniques, which hinder progress of the field. In this protocol, we present a cost-effective, simple, versatile and ultrafast method to create perfusable microchannels of complex shapes in photopolymerizable hydrogels. Our method uses one-step UV photocross-linking and a photomask printed on inexpensive transparent films, to photopattern both synthetic (PEG-norbornene) and natural (hyaluronic acid-norbornene) hydrogels in just 0.8 s. Moreover, these perfusable hydrogels are fully integrated into a custom-made microfluidic device that allows continuous fluid perfusion when connected to an external pump system. This methodology can be easily reproduced by professionals with basic laboratory skills and a fundamental knowledge of polymers and materials science. In this protocol, we demonstrate the functionality of our photopatterned hydrogels by seeding human endothelial cells into the microchannels, culturing them under dynamic conditions for 7 d, and exposing them to inflammatory stimuli to elicit cellular responses. This highlights the versatility of our platform in fabricating microphysiological systems and different microenvironments. The fabrication of perfusable channels within the hydrogels, including the fabrication of the microfluidic devices, requires ~3 d. The development of the cell-seeded microphysiological system, including the stimulation of cells, takes ~7 d. In conclusion, our approach provides a straightforward and widely applicable solution to simplify and reduce the cost of biofabrication techniques for developing functional in vitro models using perfusable three-dimensional hydrogels.

2.
Cancer Immunol Immunother ; 73(10): 204, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105848

RESUMEN

The intricate interplay between immune and stromal cells within the tumour microenvironment (TME) significantly influences tumour progression. Myeloid cells, including tumour-associated macrophages (TAMs), neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs), contribute to immune suppression in the TME (Nakamura and Smyth in Cell Mol Immunol 17(1):1-12 (2020). https://doi.org/10.1038/s41423-019-0306-1 ; DeNardo and Ruffell in Nat Rev Immunol 19(6):369-382 (2019). https://doi.org/10.1038/s41577-019-0127-6 ). This poses a significant challenge for novel immunotherapeutics that rely on host immunity to exert their effect. This systematic review explores the preclinical evidence surrounding the inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) as a strategy to reverse myeloid-driven immune suppression in solid tumours. EMBASE, MEDLINE, and PubMed databases were searched on 6 October 2022 using keyword and subject heading terms to capture relevant studies. The studies, focusing on PI3Kγ inhibition in animal models, were subjected to predefined inclusion and exclusion criteria. Extracted data included tumour growth kinetics, survival endpoints, and immunological responses which were meta-analysed. PRISMA and MOOSE guidelines were followed. A total of 36 studies covering 73 animal models were included in the review and meta-analysis. Tumour models covered breast, colorectal, lung, skin, pancreas, brain, liver, prostate, head and neck, soft tissue, gastric, and oral cancer. The predominant PI3Kγ inhibitors were IPI-549 and TG100-115, demonstrating favourable specificity for the gamma isoform. Combination therapies, often involving chemotherapy, radiotherapy, immune checkpoint inhibitors, biological agents, or vaccines, were explored in 81% of studies. Analysis of tumour growth kinetics revealed a statistically significant though heterogeneous response to PI3Kγ monotherapy, whereas the tumour growth in combination treated groups were more consistently reduced. Survival analysis showed a pronounced increase in median overall survival with combination therapy. This systematic review provides a comprehensive analysis of preclinical studies investigating PI3Kγ inhibition in myeloid-driven tumour immune suppression. The identified studies underscore the potential of PI3Kγ inhibition in reshaping the TME by modulating myeloid cell functions. The combination of PI3Kγ inhibition with other therapeutic modalities demonstrated enhanced antitumour effects, suggesting a synergistic approach to overcome immune suppression. These findings support the potential of PI3Kγ-targeted therapies, particularly in combination regimens, as a promising avenue for future clinical exploration in diverse solid tumour types.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Animales , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Microambiente Tumoral/inmunología , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Inmunoterapia/métodos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico
3.
Eur J Cancer ; 209: 114236, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059185

RESUMEN

BACKGROUND: The multi-centre two-stage SCALOP-2 trial (ISRCTN50083238) assessed whether dose escalation of consolidative chemoradiotherapy (CRT) or concurrent sensitization using the protease inhibitor nelfinavir improve outcomes in locally advanced pancreatic cancer (LAPC) following four cycles of gemcitabine/nab-paclitaxel. METHODS: In stage 1, the maximum tolerated dose (MTD) of nelfinavir concurrent with standard-dose CRT (50.4 Gy in 28 fractions) was identified from a cohort of 27 patients. In stage 2, 159 patients were enrolled in an open-label randomized controlled comparison of standard versus high dose (60 Gy in 30 fractions) CRT, with or without nelfinavir at MTD. Primary outcomes following dose escalation and nelfinavir use were respectively overall survival (OS) and progression free survival (PFS). Secondary endpoints included health-related quality of life (HRQoL). RESULTS: High dose CRT did not improve OS (16.9 (60 % confidence interval, CI 16.2-17.7) vs. 15.6 (60 %CI 14.3-18.2) months; adjusted hazard ratio, HR 1.13 (60 %CI 0.91-1.40; p = 0.68)). Similarly, median PFS was not improved by nelfinavir (10.0 (60 %CI 9.9-10.2) vs. 11.1 (60 %CI 10.3-12.8) months; adjusted HR 1.71 (60 %CI 1.38-2.12; p = 0.98)). Local progression at 12 months was numerically lower with high-dose CRT than with standard dose CRT (n = 11/46 (23.9 %) vs. n = 15/45 (33.3 %)). Neither nelfinavir nor radiotherapy dose escalation impacted on treatment compliance or grade 3/4 adverse event rate. There were no sustained differences in HRQoL scores between treatment groups over 28 weeks post-treatment. CONCLUSIONS: Dose-escalated CRT may improve local tumour control and is well tolerated when used as consolidative treatment in LAPC but does not impact OS. Nelfinavir use does not improve PFS.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Quimioradioterapia , Nelfinavir , Neoplasias Pancreáticas , Humanos , Nelfinavir/uso terapéutico , Nelfinavir/administración & dosificación , Nelfinavir/efectos adversos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Anciano , Quimioradioterapia/efectos adversos , Quimioradioterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Adulto , Paclitaxel/administración & dosificación , Paclitaxel/efectos adversos , Dosis Máxima Tolerada , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/efectos adversos , Desoxicitidina/uso terapéutico , Gemcitabina , Anciano de 80 o más Años , Calidad de Vida , Albúminas/administración & dosificación , Albúminas/uso terapéutico , Albúminas/efectos adversos , Supervivencia sin Progresión , Inhibidores de Proteasas/efectos adversos , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasas/administración & dosificación
4.
Sci Adv ; 10(27): eadm9071, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968363

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer, a disease with dismal overall survival. Advances in treatment are hindered by a lack of preclinical models. Here, we show how a personalized organotypic "avatar" created from resected tissue allows spatial and temporal reporting on a complete in situ tumor microenvironment and mirrors clinical responses. Our perfusion culture method extends tumor slice viability, maintaining stable tumor content, metabolism, stromal composition, and immune cell populations for 12 days. Using multiplexed immunofluorescence and spatial transcriptomics, we identify immune neighborhoods and potential for immunotherapy. We used avatars to assess the impact of a preclinically validated metabolic therapy and show recovery of stromal and immune phenotypes and tumor redifferentiation. To determine clinical relevance, we monitored avatar response to gemcitabine treatment and identify a patient avatar-predictable response from clinical follow-up. Thus, avatars provide valuable information for syngeneic testing of therapeutics and a truly personalized therapeutic assessment platform for patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Medicina de Precisión , Microambiente Tumoral , Animales , Humanos , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Desoxicitidina/farmacología , Gemcitabina , Inmunoterapia/métodos , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/terapia , Medicina de Precisión/métodos , Microambiente Tumoral/inmunología
5.
Biomaterials ; 308: 122542, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38547833

RESUMEN

Focal adhesions (FAs) are nanoscale complexes containing clustered integrin receptors and intracellular structural and signaling proteins that function as principal sites of mechanotransduction in part via promoting the nuclear translocation and activation of the transcriptional coactivator yes-associated protein (YAP). Knockdown of FA proteins such as focal adhesion kinase (FAK), talin, and vinculin can prevent YAP nuclear localization. However, the mechanism(s) of action remain poorly understood. Herein, we investigated the role of different functional domains in vinculin, talin, and FAK in regulating YAP nuclear localization. Using genetic or pharmacological inhibition of fibroblasts and human mesenchymal stem cells (hMSCs) adhering to deformable substrates, we find that disruption of vinculin-talin binding versus talin-FAK binding reduces YAP nuclear localization and transcriptional activity via different mechanisms. Disruption of vinculin-talin binding or knockdown of talin-1 reduces nuclear size, traction forces, and YAP nuclear localization. In contrast, disruption of the talin binding site on FAK or elimination of FAK catalytic activity did not alter nuclear size yet still prevented YAP nuclear localization and activity. These data support both nuclear tension-dependent and independent models for matrix stiffness-regulated YAP nuclear localization. Our results highlight the importance of vinculin-talin-FAK interactions at FAs of adherent cells, controlling YAP nuclear localization and activity.


Asunto(s)
Núcleo Celular , Mecanotransducción Celular , Talina , Vinculina , Proteínas Señalizadoras YAP , Talina/metabolismo , Vinculina/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Adhesiones Focales/metabolismo , Ratones , Fibroblastos/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Unión Proteica
6.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396629

RESUMEN

Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in NSCLC, activates AMP-activated protein kinase (AMPK) which in turn inhibits mammalian target of rapamycin complex 1 (mTORC1) and activates unc-51 like autophagy activating kinase 1 (ULK1) to promote autophagy. Sestrin-2 is a stress-induced protein that enhances LKB1-dependent activation of AMPK, functioning as a tumor suppressor in NSCLC. In previous studies, rosemary (Rosmarinus officinalis) extract (RE) activated the AMPK pathway while inhibiting mTORC1 to suppress proliferation, survival, and migration, leading to the apoptosis of NSCLC cells. In the present study, we investigated the anticancer potential of carnosic acid (CA), a bioactive polyphenolic diterpene compound found in RE. The treatment of H1299 and H460 NSCLC cells with CA resulted in concentration and time-dependent inhibition of cell proliferation assessed with crystal violet staining and 3H-thymidine incorporation, and concentration-dependent inhibition of survival, assessed using a colony formation assay. Additionally, CA induced apoptosis of H1299 cells as indicated by decreased B-cell lymphoma 2 (Bcl-2) levels, increased cleaved caspase-3, -7, poly (ADP-ribose) polymerase (PARP), Bcl-2-associated X protein (BAX) levels, and increased nuclear condensation. These antiproliferative and proapoptotic effects coincided with the upregulation of sestrin-2 and the phosphorylation/activation of LKB1 and AMPK. Downstream of AMPK signaling, CA increased levels of autophagy marker light chain 3 (LC3), an established marker of autophagy; inhibiting autophagy with 3-methyladenine (3MA) blocked the antiproliferative effect of CA. Overall, these data indicate that CA can inhibit NSCLC cell viability and that the underlying mechanism of action of CA involves the induction of autophagy through a Sestrin-2/LKB1/AMPK signaling cascade. Future experiments will use siRNA and small molecule inhibitors to better elucidate the role of these signaling molecules in the mechanism of action of CA as well as tumor xenograft models to assess the anticancer properties of CA in vivo.


Asunto(s)
Abietanos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Abietanos/farmacología , Abietanos/uso terapéutico , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Serina-Treonina Quinasas/metabolismo , Sestrinas/efectos de los fármacos , Sestrinas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo
7.
iScience ; 27(3): 109031, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38380257

RESUMEN

The transcriptional co-activator YAP forms complexes with distinct transcription factors, controlling cell fate decisions, such as proliferation and apoptosis. However, the mechanisms underlying its context-dependent function are poorly defined. This study explores the interplay between the TGF-ß and Hippo pathways and their influence on YAP's association with specific transcription factors. By integrating iterative mathematical modeling with experimental validation, we uncover molecular switches, predominantly controlled by RASSF1A and ITCH, which dictate the formation of YAP-SMAD (proliferative) and YAP-p73 (apoptotic) complexes. Our results show that RASSF1A enhances the formation of apoptotic complexes, whereas ITCH promotes the formation of proliferative complexes. Notably, higher levels of ITCH transform YAP-SMAD activity from a transient to a sustained state, impacting cellular behaviors. Extending these findings to various breast cancer cell lines highlights the role of cellular context in YAP regulation. Our study provides new insights into the mechanisms of YAP transcriptional activities and their therapeutic implications.

8.
Dis Model Mech ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421046

RESUMEN

The value of radiotherapy in the treatment of pancreatic cancer has been the subject of much debate but limited preclinical research. We hypothesise that the poor translation of radiation research into clinical trials of radiotherapy in pancreatic cancer is due, in part, to inadequate preclinical study models. Here, we developed and refined methods for targeted irradiation in autochthonous mouse models of pancreatic cancer, using a small animal radiotherapy research platform. We tested and optimised strategies for administration of contrast agents, iohexol and the liver imaging agent Fenestra LC, to enable the use of computed tomography imaging in tumour localisation. We demonstrate accurate tumour targeting, negligible off-target effects and therapeutic efficacy, depending on dose, number of fractions and tumour size, and provide a proof of concept that precise radiation can be delivered effectively to mouse pancreatic tumours with a clinically relevant microenvironment. This advance will allow investigation of the radiation response in murine pancreatic cancer, discovery of mechanisms and biomarkers of radiosensitivity or resistance, and development of radiosensitising strategies to inform clinical trials for precision radiotherapy in this disease.


Asunto(s)
Neoplasias Pancreáticas , Planificación de la Radioterapia Asistida por Computador , Animales , Ratones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Pancreáticas/radioterapia , Modelos Animales de Enfermedad , Tomografía Computarizada por Rayos X/métodos , Microambiente Tumoral
9.
Cell Death Differ ; 30(7): 1619-1635, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37270580

RESUMEN

Oncogenic KRAS activation, inflammation and p53 mutation are key drivers of pancreatic cancer (PC) development. Here we report iASPP, an inhibitor of p53, as a paradoxical suppressor of inflammation and oncogenic KRASG12D-driven PC tumorigenesis. iASPP suppresses PC onset driven by KRASG12D alone or KRASG12D in combination with mutant p53R172H. iASPP deletion limits acinar-to-ductal metaplasia (ADM) in vitro but accelerates inflammation and KRASG12D-induced ADM, pancreatitis and PC tumorigenesis in vivo. KRASG12D/iASPPΔ8/Δ8 tumours are well-differentiated classical PCs and their derivative cell lines form subcutaneous tumours in syngeneic and nude mice. Transcriptomically, either iASPP deletion or p53 mutation in the KRASG12D background altered the expression of an extensively overlapping gene set, comprised primarily of NF-κB and AP1-regulated inflammatory genes. All these identify iASPP as a suppressor of inflammation and a p53-independent oncosuppressor of PC tumorigenesis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Carcinogénesis/genética , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Inflamación/genética , Ratones Desnudos , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
10.
Molecules ; 27(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500723

RESUMEN

The pancreas is a glandular organ with endocrine and exocrine functions necessary for the maintenance of blood glucose homeostasis and secretion of digestive enzymes. Pancreatitis is characterized by inflammation of the pancreas leading to temporary or permanent pancreatic dysfunction. Inflammation and fibrosis caused by chronic pancreatitis exacerbate malignant transformation and significantly increase the risk of developing pancreatic cancer, the world's most aggressive cancer with a 5-year survival rate less than 10%. Berberine (BBR) is a naturally occurring plant-derived polyphenol present in a variety of herbal remedies used in traditional medicine to treat ulcers, infections, jaundice, and inflammation. The current review summarizes the existing in vitro and in vivo evidence on the effects of BBR against pancreatitis and pancreatic cancer with a focus on the signalling mechanisms underlying the effects of BBR.


Asunto(s)
Berberina , Neoplasias Pancreáticas , Pancreatitis , Humanos , Berberina/farmacología , Berberina/uso terapéutico , Páncreas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Inflamación/patología , Neoplasias Pancreáticas
11.
EMBO Rep ; 23(8): e54483, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35758159

RESUMEN

DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a relatively greater impact on overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites. Recent progress in understanding how the rDNA damage response is organized has highlighted a key role of adaptor proteins. Here, we show that the scaffold tumor suppressor RASSF1A is recruited to rDNA breaks. RASSF1A recruitment to double-strand breaks is mediated by 53BP1 and depends on RASSF1A phosphorylation at Serine 131 by ATM kinase. Employing targeted rDNA damage, we uncover that RASSF1A recruitment promotes local ATM signaling. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Overall, we identify a novel role for RASSF1A at rDNA break sites, provide mechanistic insight into how the DNA damage response is organized in a chromatin context, and provide further evidence for how silencing of the RASSF1A tumor suppressor contributes to genome instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Reparación del ADN , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Fosforilación , Transducción de Señal/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
12.
Patterns (N Y) ; 3(4): 100441, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35465231

RESUMEN

Chemical-induced gene expression profiles provide critical information of chemicals in a biological system, thus offering new opportunities for drug discovery. Despite their success, large-scale analysis leveraging gene expressions is limited by time and cost. Although several methods for predicting gene expressions were proposed, they only focused on imputation and classification settings, which have limited applications to real-world scenarios of drug discovery. Therefore, a chemical-induced gene expression ranking (CIGER) framework is proposed to target a more realistic but more challenging setting in which overall rankings in gene expression profiles induced by de novo chemicals are predicted. The experimental results show that CIGER significantly outperforms existing methods in both ranking and classification metrics. Furthermore, a drug screening pipeline based on CIGER is proposed to identify potential treatments of drug-resistant pancreatic cancer. Our predictions have been validated by experiments, thereby showing the effectiveness of CIGER for phenotypic compound screening of precision medicine.

13.
Curr Oncol ; 29(4): 2516-2529, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35448180

RESUMEN

Surgical resection remains the only curative treatment strategy for Pancreatic Ductal Adenocarcinoma (PDAC). A proportion of patients succumb to early disease recurrence post-operatively despite receiving adjuvant chemotherapy. The ability to identify these high-risk individuals at their initial diagnosis, prior to surgery, could potentially alter their treatment algorithm. This unique patient cohort may benefit from neo-adjuvant chemotherapy, even in the context of resectable disease, as this may secure systemic control over their disease burden. It may also improve patient selection for surgery. Using the Cancer Genome Atlas dataset, we first confirmed the poor overall survival associated with early disease recurrence (p < 0.0001). The transcriptomic profiles of these tumours were analysed, and we identified key aberrant signalling pathways involved in early disease relapse; downregulation across several immune signalling pathways was noted. Differentially expressed genes that could serve as biomarkers were identified (BPI, C6orf58, CD177, MCM7 and NUDT15). Receiver operating characteristic curves were constructed in order to identify biomarkers with a high diagnostic ability to identify patients who developed early disease recurrence. NUDT15 expression had the highest discriminatory capability as a biomarker (AUC 80.8%). Its expression was confirmed and validated in an independent cohort of patients with resected PDAC (n = 13). Patients who developed an early recurrence had a statistically higher tumour expression of NUDT15 when compared to patients who did not recur early (p < 0.01). Our results suggest that NUDT15 can be used as a prognostic biomarker that can stratify patients according to their risk of developing early disease recurrence.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/cirugía , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirugía , Pronóstico , Neoplasias Pancreáticas
14.
Int J Epidemiol ; 51(3): 817-829, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35064782

RESUMEN

BACKGROUND: Pancreatic cancer has a very poor prognosis. Biomarkers that may help predict or diagnose pancreatic cancer may lead to earlier diagnosis and improved survival. METHODS: The prospective China Kadoorie Biobank (CKB) recruited 512 891 adults aged 30-79 years during 2004-08, recording 702 incident cases of pancreatic cancer during 9 years of follow-up. We conducted a case-subcohort study measuring 92 proteins in 610 cases and a subcohort of 623 individuals, using the OLINK immuno-oncology panel in stored baseline plasma samples. Cox regression with the Prentice pseudo-partial likelihood was used to estimate adjusted hazard ratios (HRs) for risk of pancreatic cancer by protein levels. RESULTS: Among 1233 individuals (including 610 cases), several chemokines, interleukins, growth factors and membrane proteins were associated with risk of pancreatic cancer, with adjusted HRs per 1 standard deviation (SD) of 0.86 to 1.86, including monocyte chemotactic protein 3 (MCP3/CCL7) {1.29 [95% CI (confidence interval) (1.10, 1.51)]}, angiopoietin-2 (ANGPT2) [1.27 (1.10, 1.48)], interleukin-18 (IL18) [1.24 (1.07, 1.43)] and interleukin-6 (IL6) [1.21 (1.06, 1.38)]. Associations between some proteins [e.g. matrix metalloproteinase-7 (MMP7), hepatocyte growth factor (HGF) and tumour necrosis factor receptor superfamily member 9 [TNFRSF9)] and risk of pancreatic cancer were time-varying, with higher levels associated with higher short-term risk. Within the first year, the discriminatory ability of a model with known risk factors (age, age squared, sex, region, smoking, alcohol, education, diabetes and family history of cancer) was increased when several proteins were incorporated (weighted C-statistic changed from 0.85 to 0.99; P for difference = 4.5 × 10-5), although only a small increase in discrimination (0.77 to 0.79, P = 0.04) was achieved for long-term risk. CONCLUSIONS: Several plasma proteins were associated with subsequent diagnosis of pancreatic cancer. The potential clinical utility of these biomarkers warrants further investigation.


Asunto(s)
Neoplasias Pancreáticas , Adulto , Biomarcadores , China/epidemiología , Humanos , Neoplasias Pancreáticas/epidemiología , Estudios Prospectivos , Factores de Riesgo , Neoplasias Pancreáticas
15.
EMBO Rep ; 23(2): e51287, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34897944

RESUMEN

RASSF1A promoter methylation has been correlated with tumor dedifferentiation and aggressive oncogenic behavior. Nevertheless, the underlying mechanism of RASSF1A-dependent tumor dedifferentiation remains elusive. Here, we show that RASSF1A directly uncouples the NOTCH-HES1 axis, a key suppressor of differentiation. Interestingly, the crosstalk of RASSF1A with HES1 occurs independently from the signaling route connecting RASSF1A with the Hippo pathway. At the molecular level, we demonstrate that RASSF1A acts as a scaffold essential for the SUMO-targeted E3 ligase SNURF/RNF4 to target HES1 for degradation. The reciprocal relationship between RASSF1A and HES1 is evident across a wide range of human tumors, highlighting the clinical significance of the identified pathway. We show that HES1 upregulation in a RASSF1A-depleted environment renders cells non-responsive to the downstream effects of γ-secretase inhibitors (GSIs) which restrict signaling at the level of the NOTCH receptor. Taken together, we report a mechanism through which RASSF1A exerts autonomous regulation of the critical Notch effector HES1, thus classifying RASSF1A expression as an integral determinant of the clinical effectiveness of Notch inhibitors.


Asunto(s)
Receptores Notch , Transducción de Señal , Factor de Transcripción HES-1 , Proteínas Supresoras de Tumor , Humanos , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
16.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34831271

RESUMEN

Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.


Asunto(s)
Galectina 3/metabolismo , Enfermedades del Sistema Nervioso/patología , Neurogénesis , Animales , Encéfalo/metabolismo , Encéfalo/patología , COVID-19/metabolismo , COVID-19/patología , Movimiento Celular , Galectina 3/química , Galectina 3/genética , Humanos , Inflamación , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/patología , Enfermedades del Sistema Nervioso/metabolismo , Células-Madre Neurales/citología , Transducción de Señal
17.
EMBO J ; 40(20): e107680, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34532864

RESUMEN

Cell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood. Here, we show that the novel oncogene RASSF1C drives mesenchymal-to-amoeboid transition and stem cell attributes in breast cancer cells. Mechanistically, RASSF1C activates Rho/ROCK via SRC-mediated RhoGDI inhibition, resulting in generation of actomyosin contractility. Moreover, we demonstrate that RASSF1C-induced amoeboid cells display increased expression of cancer stem-like markers such as CD133, ALDH1, and Nanog, and are accompanied by higher invasive potential in vitro and in vivo. Further, RASSF1C-induced amoeboid cells employ extracellular vesicles to transfer the invasive phenotype to target cells and tissue. Importantly, the underlying RASSF1C-driven biological processes concur to explain clinical data: namely, methylation of the RASSF1C promoter correlates with better survival in early-stage breast cancer patients. Therefore, we propose the use of RASSF1 gene promoter methylation status as a biomarker for patient stratification.


Asunto(s)
Neoplasias de la Mama/genética , Vesículas Extracelulares/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína de Unión al GTP rhoA/genética , Familia-src Quinasas/genética , Antígeno AC133/genética , Antígeno AC133/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Islas de CpG , Metilación de ADN , Vesículas Extracelulares/química , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Ratones SCID , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/patología , Transducción de Señal , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Análisis de Supervivencia , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/metabolismo
18.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201273

RESUMEN

Conventional static culture fails to replicate the physiological conditions that exist in vivo. Recent advances in biomedical engineering have resulted in the creation of novel dynamic culturing systems that permit the recapitulation of normal physiological processes ex vivo. Whilst the physiological benefit for its use in the culture of two-dimensional cellular monolayer has been validated, its role in the context of primary human tissue culture has yet to be determined. This systematic review identified 22 articles that combined dynamic physiological culture techniques with primary human tissue culture. The most frequent method described (55%) utilised dynamic perfusion culture. A diverse range of primary human tissue was successfully cultured. The median duration of successful ex vivo culture of primary human tissue for all articles was eight days; however, a wide range was noted (5 h-60 days). Six articles (27%) reported successful culture of primary human tissue for greater than 20 days. This review illustrates the physiological benefit of combining dynamic culture with primary human tissue culture in both long-term culture success rates and preservation of native functionality of the tissue ex vivo. Further research efforts should focus on developing precise biochemical sensors that would allow for real-time monitoring and automated self-regulation of the culture system in order to maintain homeostasis. Combining these techniques allows the creation of an accurate system that can be used to gain a greater understanding of human physiology.

20.
Gastroenterology ; 161(2): 653-668.e16, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33915173

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by advanced disease stage at presentation, aggressive disease biology, and resistance to therapy, resulting in an extremely poor 5-year survival rate of <10%. PDAC is classified into transcriptional subtypes with distinct survival characteristics, although how these arise is not known. Epigenetic deregulation, rather than genetics, has been proposed to underpin progression, but exactly why is unclear and is hindered by the technical limitations of analyzing clinical samples. METHODS: We performed genome-wide epigenetic mapping of DNA modifications 5-methylcytosine and 5-hydroxymethylcytosine (5hmc) using oxidative bisulfite sequencing from formalin-embedded sections. We identified overlap with transcriptional signatures in formalin-fixed, paraffin-embedded tissue from resected patients, via bioinformatics using iCluster and mutational profiling and confirmed them in vivo. RESULTS: We found that aggressive squamous-like PDAC subtypes result from epigenetic inactivation of loci, including GATA6, which promote differentiated classical pancreatic subtypes. We showed that squamous-like PDAC transcriptional subtypes are associated with greater loss of 5hmc due to reduced expression of the 5-methylcytosine hydroxylase TET2. Furthermore, we found that SMAD4 directly supports TET2 levels in classical pancreatic tumors, and loss of SMAD4 expression was associated with reduced 5hmc, GATA6, and squamous-like tumors. Importantly, enhancing TET2 stability using metformin and vitamin C/ascorbic acid restores 5hmc and GATA6 levels, reverting squamous-like tumor phenotypes and WNT-dependence in vitro and in vivo. CONCLUSIONS: We identified epigenetic deregulation of pancreatic differentiation as an underpinning event behind the emergence of transcriptomic subtypes in PDAC. Our data showed that restoring epigenetic control increases biomarkers of classical pancreatic tumors that are associated with improved therapeutic responses and survival.


Asunto(s)
5-Metilcitosina/análogos & derivados , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Epigénesis Genética , Factor de Transcripción GATA6/genética , Neoplasias Pancreáticas/genética , Transcripción Genética , 5-Metilcitosina/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Ácido Ascórbico/farmacología , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/patología , Diferenciación Celular , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Epigénesis Genética/efectos de los fármacos , Epigenoma , Epigenómica , Factor de Transcripción GATA6/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Metformina/farmacología , Ratones Desnudos , Ratones Transgénicos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Estudios Retrospectivos , Proteína Smad4/genética , Proteína Smad4/metabolismo , Transcripción Genética/efectos de los fármacos , Transcriptoma , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA