Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Aging Cell ; : e14235, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923664

RESUMEN

The rationale for the use of metformin as a treatment to slow aging was largely based on data collected from metabolically unhealthy individuals. For healthspan extension metformin will also be used in periods of good health. To understand the potential context specificity of metformin treatment on skeletal muscle, we used a rat model (high-capacity runner/low-capacity runner [HCR/LCR]) with a divide in intrinsic aerobic capacity. Outcomes of metformin treatment differed based on baseline intrinsic mitochondrial function, oxidative capacity of the muscle (gastroc vs soleus), and the mitochondrial population (intermyofibrillar vs. subsarcolemmal). Metformin caused lower ADP-stimulated respiration in LCRs, with less of a change in HCRs. However, a washout of metformin resulted in an unexpected doubling of respiratory capacity in HCRs. These improvements in respiratory capacity were accompanied by mitochondrial remodeling that included increases in protein synthesis and changes in morphology. Our findings raise questions about whether the positive findings of metformin treatment are broadly applicable.

3.
Redox Biol ; 73: 103189, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38788541

RESUMEN

Age-related endothelial dysfunction is a pivotal factor in the development of cardiovascular diseases, stemming, at least in part, from mitochondrial dysfunction and a consequential increase in oxidative stress. These alterations are central to the decline in vascular health seen with aging, underscoring the urgent need for interventions capable of restoring endothelial function for preventing cardiovascular diseases. Dietary interventions, notably time-restricted feeding (TRF), have been identified for their anti-aging effects on mitochondria, offering protection against age-associated declines in skeletal muscle and other organs. Motivated by these findings, our study aimed to investigate whether TRF could similarly exert protective effects on endothelial health in the vasculature, enhancing mitochondrial function and reducing oxidative stress. To explore this, 12-month-old C57BL/6 mice were placed on a TRF diet, with food access limited to a 6-h window daily for 12 months. For comparison, we included groups of young mice and age-matched controls with unrestricted feeding. We evaluated the impact of TRF on endothelial function by measuring acetylcholine-induced vasorelaxation of the aorta. Mitochondrial health was assessed using fluororespirometry, and vascular reactive oxygen species (ROS) production was quantified with the redox-sensitive dye dihydroethidium. We also quantified 4-hydroxynonenal (4-HNE) levels, a stable marker of lipid peroxidation, in the aorta using ELISA. Our findings demonstrated that aged mice on a standard diet exhibited significant impairments in aortic endothelial relaxation and mitochondrial function, associated with elevated vascular oxidative stress. Remarkably, the TRF regimen led to substantial improvements in these parameters, indicating enhanced endothelial vasorelaxation, better mitochondrial function, and reduced oxidative stress in the aortas of aged mice. This investigation establishes a vital foundation, paving the way for subsequent clinical research aimed at exploring the cardiovascular protective benefits of intermittent fasting.


Asunto(s)
Envejecimiento , Aorta , Endotelio Vascular , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Vasodilatación , Animales , Ratones , Mitocondrias/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Aorta/metabolismo , Aorta/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Envejecimiento/metabolismo , Masculino , Ratones Endogámicos C57BL , Aldehídos/metabolismo , Aldehídos/farmacología
4.
Sci Rep ; 14(1): 8094, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582781

RESUMEN

The mammalian target of rapamycin (mTOR), and specifically the mTOR complex 1 (mTORC1) is the central regulator of anabolism in skeletal muscle. Among the many functions of this kinase complex is the inhibition of the catabolic process of autophagy; however, less work has been done in investigating the role of autophagy in regulating mTORC1 signaling. Using an in vitro model to better understand the pathways involved, we activated mTORC1 by several different means (growth factors, leucine supplementation, or muscle contraction), alone or with the autophagy inhibitor NSC185058. We found that inhibiting autophagy with NSC185058 suppresses mTORC1 activity, preventing any increase in cellular protein anabolism. These decrements were the direct result of action on the mTORC1 kinase, which we demonstrate, for the first time, cannot function when autophagy is inhibited by NSC185058. Our results indicate that, far from being a matter of unidirectional action, the relationship between mTORC1 and the autophagic cascade is more nuanced, with autophagy serving as an mTORC1 input, and mTORC1 inhibition of autophagy as a form of homeostatic feedback to regulate anabolic signaling. Future studies of cellular metabolism will have to consider this fundamental intertwining of protein anabolism and catabolism, and how it ultimately serves to regulate muscle proteostasis.


Asunto(s)
Aminopiridinas , Autofagia , Serina-Treonina Quinasas TOR , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/fisiología , Músculo Esquelético/metabolismo
5.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496648

RESUMEN

The rationale for the use of metformin as a treatment to slow aging was largely based on data collected from metabolically unhealthy individuals. For healthspan extension metformin will also be used in periods of good health. To understand potential context specificity of metformin treatment on skeletal muscle, we used a rat model (HCR/LCR) with a divide in intrinsic aerobic capacity. Outcomes of metformin treatment differed based on baseline intrinsic mitochondrial function, oxidative capacity of the muscle (gastroc vs soleus), and the mitochondrial population (IMF vs SS). Metformin caused lower ADP-stimulated respiration in LCRs, with less of a change in HCRs. However, a washout of metformin resulted in an unexpected doubling of respiratory capacity in HCRs. These improvements in respiratory capacity were accompanied by mitochondrial remodeling that included increases in protein synthesis and changes in morphology. Our findings raise questions about whether the positive findings of metformin treatment are broadly applicable.

7.
Life Sci Space Res (Amst) ; 37: 39-49, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37087178

RESUMEN

BACKGROUND: The limitations to prolonged spaceflight include unloading-induced atrophy of the musculoskeletal system which may be enhanced by exposure to the space radiation environment. Previous results have concluded that partial gravity, comparable to the Lunar surface, may have detrimental effects on skeletal muscle. However, little is known if these outcomes are exacerbated by exposure to low-dose rate, high-energy radiation common to the space environment. Therefore, the present study sought to determine the impact of highly charge, high-energy (HZE) radiation on skeletal muscle when combined with partial weightbearing to simulate Lunar gravity. We hypothesized that partial unloading would compromise skeletal muscle and these effects would be exacerbated by radiation exposure. METHODS: For month old female BALB/cByJ mice were -assigned to one of 2 groups; either full weight bearing (Cage Controls, CC) or partial weight bearing equal to 1/6th bodyweight (G/6). Both groups were then divided to receive either a single whole body absorbed dose of 0.5 Gy of 300 MeV 28Si ions (RAD) or a sham treatment (SHAM). Radiation exposure experiments were performed at the NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory on Day 0, followed by 21 d of CC or G/6 loading. Muscles of the hind limb were used to measure protein synthesis and other histological measures. RESULTS: Twenty-one days of Lunar gravity (G/6) resulted in lower soleus, plantaris, and gastrocnemius muscle mass. Radiation exposure did not further impact muscle mass. 28Si exposure in normal ambulatory animals (RAD+CC) did not impact gastrocnemius muscle mass when compared to SHAM+CC (p>0.05), but did affect the soleus, where mass was higher following radiation compared to SHAM (p<0.05). Mixed gastrocnemius muscle protein synthesis was lower in both unloading groups. Fiber type composition transitioned towards a faster isoform with partial unloading and was not further impacted by radiation. The combined effects of partial loading and radiation partially mitigated fiber cross-sectional area when compared to partial loading alone. Radiation and G/6 reduced the total number of myonuclei per fiber while leading to elevated BrdU content of skeletal muscle. Similarly, unloading and radiation resulted in higher collagen content of muscle when compared to controls, but the effects of combined exposure were not additive. CONCLUSIONS: The results of this study confirm that partial weightbearing causes muscle atrophy, in part due to reductions of muscle protein synthesis in the soleus and gastrocnemius as well as reduced peripheral nuclei per fiber. Additionally, we present novel data illustrating 28Si exposure reduced nuclei in muscle fibers despite higher satellite cell fusion, but did not exacerbate muscle atrophy, CSA changes, or collagen content. In conclusion, both partial loading and HZE radiation can negatively impact muscle morphology.


Asunto(s)
Iones Pesados , Ratones , Animales , Femenino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/metabolismo , Colágeno/metabolismo , Colágeno/farmacología , Suspensión Trasera/efectos adversos , Suspensión Trasera/fisiología
8.
J Appl Physiol (1985) ; 134(1): 181-189, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519568

RESUMEN

Healthy brain activity requires precise ion and energy management creating a strong reliance on mitochondrial function. Age-related neurodegeneration leads to a decline in mitochondrial function and increased oxidative stress, with associated declines in mitochondrial mass, respiration capacity, and respiration efficiency. The interdependent processes of mitochondrial protein turnover and mitochondrial dynamics, known together as mitochondrial remodeling, play essential roles in mitochondrial health and therefore brain function. This mini-review describes the role of mitochondria in neurodegeneration and brain health, current practices for assessing both aspects of mitochondrial remodeling, and how exercise mitigates the adverse effects of aging in the brain. Exercise training elicits functional adaptations to improve brain health, and current literature strongly suggests that mitochondrial remodeling plays a vital role in these positive adaptations. Despite substantial implications that the two aspects of mitochondrial remodeling are interdependent, very few investigations have simultaneously measured mitochondrial dynamics and protein synthesis. An improved understanding of the partnership between mitochondrial protein turnover and mitochondrial dynamics will provide a better understanding of their role in both brain health and disease, as well as how they induce protection following exercise.


Asunto(s)
Ejercicio Físico , Mitocondrias , Mitocondrias/metabolismo , Estrés Oxidativo , Proteínas Mitocondriales/metabolismo
9.
Genes (Basel) ; 13(8)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36011279

RESUMEN

The orexigenic hormone ghrelin has multifaceted roles in health and disease. We have reported that ablation of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), protects against metabolic dysfunction of adipose tissues in aging. Our further observation interestingly revealed that GHS-R deficiency phenocopies the effects of myokine irisin. In this study, we aim to determine whether GHS-R affects the metabolic functions of aging skeletal muscle and whether GHS-R regulates the muscular functions via irisin. We first studied the expression of metabolic signature genes in gastrocnemius muscle of young, middle-aged and old mice. Then, old GHS-R knockout (Ghsr-/-) mice and their wild type counterparts were used to assess the impact of GHS-R ablation on the metabolic characteristics of gastrocnemius and soleus muscle. There was an increase of GHS-R expression in skeletal muscle during aging, inversely correlated with the decline of metabolic functions. Remarkedly the muscle of old GHS-R knockout (Ghsr-/-) mice exhibited a youthful metabolic profile and better maintenance of oxidative type 2 muscle fibers. Furthermore, old Ghsr-/- mice showed improved treadmill performance, supporting better functionality. Also intriguing to note was the fact that old GHS-R-ablated mice showed increased expression of the irisin precursor FNDC5 in the muscle and elevated plasma irisin levels in circulation, which supports a potential interrelationship between GHS-R and irisin. Overall, our work suggests that GHS-R has deleterious effects on the metabolism of aging muscle, which may be at least partially mediated by myokine irisin.


Asunto(s)
Fibronectinas , Receptores de Ghrelina , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Metabolismo Energético/fisiología , Fibronectinas/genética , Fibronectinas/metabolismo , Ratones , Músculo Esquelético/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo
10.
World J Biol Chem ; 12(5): 70-86, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34630911

RESUMEN

The prevalence of type 2 diabetes (T2D) continues to rise despite the amount of research dedicated to finding the culprits of this debilitating disease. Skeletal muscle is arguably the most important contributor to glucose disposal making it a clear target in insulin resistance and T2D research. Within skeletal muscle there is a clear link to metabolic dysregulation during the progression of T2D but the determination of culprits vs consequences of the disease has been elusive. Emerging evidence in skeletal muscle implicates influential cross talk between a key anabolic regulatory protein, the mammalian target of rapamycin (mTOR) and its associated complexes (mTORC1 and mTORC2), and the well-described canonical signaling for insulin-stimulated glucose uptake. This new understanding of cellular signaling crosstalk has blurred the lines of what is a culprit and what is a consequence with regard to insulin resistance. Here, we briefly review the most recent understanding of insulin signaling in skeletal muscle, and how anabolic responses favoring anabolism directly impact cellular glucose disposal. This review highlights key cross-over interactions between protein and glucose regulatory pathways and the implications this may have for the design of new therapeutic targets for the control of glucoregulatory function in skeletal muscle.

11.
Amino Acids ; 53(9): 1431-1439, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34232398

RESUMEN

The use of 2H2O in tank water to assess protein synthesis rates in fish is a relatively novel methodology that could allow for a better understanding of the effects of particular nutritional and environmental variables on rates of protein accretion. As such, this study involved an assessment and comparison of protein synthesis rates in the muscle of juvenile red drum fed a control diet (nutritionally complete) versus a valine (Val)-deficient diet. Six groups of 12 juvenile red drum, initially weighing ~ 4.5 g/fish, were stocked in six separate 38-L aquaria operating as a recirculating system. Fish were acclimatized to experimental conditions for 2 weeks while being fed the control diet. Just prior to initiating the protein synthesis assay, one aquarium of fish was fed the control diet while a second aquarium of fish was fed the Val-deficient diet. Immediately after consuming the experimental diets, each group of fish was moved to an independent aquarium containing 2H2O, and the fractional synthetic rate (FSR) of protein synthesis was obtained at 12, 24, 36 and 48 h after feeding by collecting two fish per treatment at each time point. This protein synthesis assay procedure was performed in three separate sessions, and considered as replicates over time (n = 3) for fish fed the control or Val-deficient diets immediately before initiating the session. Results indicated that a one-time feeding of a diet deficient in Val significantly reduced protein synthesis rates in the muscle of red drum. In addition, a significant effect of time after feeding was found, where observed FSR values peaked at 12 h after feeding and decreased as time progressed. In conclusion, deuterium methodologies were applicable to red drum, and this approach had the sensitivity to assess differences in protein synthesis rates when dietary perturbations were introduced.


Asunto(s)
Alimentación Animal/análisis , Óxido de Deuterio/química , Dieta , Suplementos Dietéticos , Proteínas Musculares/metabolismo , Músculos/metabolismo , Valina/deficiencia , Animales , Perciformes
12.
J Equine Vet Sci ; 102: 103463, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34119194

RESUMEN

Despite the fact that horseback riding is a popular sport, there is little information available on horseback riding as a physical activity. The objective of this experiment was to quantify energy expenditure of participants (n=20) during three riding tests: a 45min walk-trot-canter ride (WTC), a reining pattern ride and a cutting simulation ride while wearing a telemetric gas analyzer. Total energy expenditure (tEE), mean and peak metabolic equivalents of task (MET), heart rate (HR), respiratory frequency (RF), relative oxygen consumption (relVO2), and respiratory exchange ratio (RER) were assessed. Mean MET and HR responses were greater (P < .05) for riders during the long trot portion of the WTC (6.19 ± 0.21 MET, 152.14 ± 4.4 bpm) and cutting (4.53±0.21 MET, 146.88 ± 4.4 bpm) vs the overall WTC (3.81 ± 0.16 MET, 131.5 ± 4.2 bpm). When WTC was evaluated by gait, mean MET increased as gait speed increased. As expected, METs were greater (P < .05) for riders during long trot (6.19 ± 0.21 MET) and canter (5.95 ± 0.21 MET) than during the walk (2.01 ± 0.21 MET) or trot (3.2 ± 0.21 MET). Previous horseback riding studies have not reported METs, but the peaks of all three activities in the present study were similar to METs measured during activities like jogging, playing soccer and rugby. Riders engaged in cutting and reining experienced more intense exercise in short durations, while, as expected on the basis of the duration of the activity, WTC provided a greater overall total energy expenditure. These results suggest that it is possible for health benefits to be achieved through accumulated horseback riding exercise, particularly if riding at the more intense gaits.


Asunto(s)
Condicionamiento Físico Animal , Deportes , Animales , Metabolismo Energético , Marcha , Caballos , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA