Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(56): 7204-7207, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38910507

RESUMEN

Reduction of [Mg(NON)]2 ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) affords Mg(I) species containing NON- and NNO-ligands ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The products of reactions with iPrNCNiPr and CO are consistent with the presence of reducing Mg(I) centres. Extraction with THF affords [K(THF)2]2[(NNO)Mg-Mg(NNO)] with a structurally characterised Mg-Mg bond that was examined using density functional theory.

2.
Chem Commun (Camb) ; 60(7): 881-884, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38165276

RESUMEN

The aluminacyclopropane K[Al(NON)(η-C2H4)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) reacts with CO2 and iPrNCNiPr to afford ring-expanded products of C-C bond formation. The latter system undergoes a 1,3-silyl retro-Brook rearrangement of the NON-group, to afford the [NNO]2- ligand ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The mechanism of transformation was examined by density functional theory (DFT).

3.
Chemistry ; 30(1): e202302999, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37786922

RESUMEN

A simple sequential addition protocol for the reductive coupling of ketones and aldehydes by a potassium aluminyl grants access to unsymmetrical pinacolate derivatives. Isolation of an aluminium ketyl complex presents evidence for the accessibility of radical species. Product release from the aluminium centre was achieved using an iodosilane, forming the disilylated 1,2-diol and a neutral aluminium iodide, thereby demonstrating the steps required to generate a closed synthetic cycle for pinacol (cross) coupling at an aluminyl anion.

4.
Chemistry ; 29(56): e202301849, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429823

RESUMEN

Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA