Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 15(1): 114-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26516157

RESUMEN

Death receptors of the TNF family are found on the surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors 4 and 5 (DR4 and DR5) is TNF-related apoptosis-inducing ligand, TRAIL (Apo2L). As most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing proapoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 monospecific antibodies. Taken together, Surrobody shows promising preclinical proapoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Apoptosis/efectos de los fármacos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Animales , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nature ; 489(7417): 526-32, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22982990

RESUMEN

Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Especificidad de Anticuerpos/genética , Antígenos Virales/química , Antígenos Virales/inmunología , Sitios de Unión , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Secuencia Conservada , Reacciones Cruzadas/genética , Reacciones Cruzadas/inmunología , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/química , Subtipo H3N2 del Virus de la Influenza A/inmunología , Virus de la Influenza A/química , Vacunas contra la Influenza/inmunología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA