Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metab Eng Commun ; 14: e00196, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35310468

RESUMEN

Interest in the potential therapeutic efficacy of psilocybin and other psychedelic compounds has escalated significantly in recent years. To date, little is known regarding the biological activity of the psilocybin pathway intermediate, norbaeocystin, due to limitations around sourcing the phosphorylated tryptamine metabolite for in vivo testing. To address this limitation, we first developed a novel E. coli platform for the rapid and scalable production of gram-scale amounts of norbaeocystin. Through this process we compare the genetic and fermentation optimization strategies to that of a similarly constructed and previously reported psilocybin producing strain, uncovering the need for reoptimization and balancing upon even minor genetic modifications to the production host. We then perform in vivo measurements of head twitch response to both biosynthesized psilocybin and norbaeocystin using both a cell broth and water vehicle in Long-Evans rats. The data show a dose response to psilocybin while norbaeocystin does not elicit any pharmacological response, suggesting that norbaeocystin and its metabolites may not have a strong affinity for the serotonin 2A receptor. The findings presented here provide a mechanism to source norbaeocystin for future studies to evaluate its disease efficacy in animal models, both individually and in combination with psilocybin, and support the safety of cell broth as a drug delivery vehicle.

2.
Bioengineered ; 12(1): 8863-8871, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607532

RESUMEN

Psilocybin, a drug most commonly recognized as a recreational psychedelic, is quickly gaining attention as a promising therapy for an expanding range of neurological conditions, including depression, anxiety, and addiction. This growing interest has led to many recent advancements in psilocybin synthesis strategies, including multiple in vivo fermentation-based approaches catalyzed by recombinant microorganisms. In this work, we show that psilocybin can be produced in biologically relevant quantities using a recombinant E. coli strain in a homebrew style environment. In less than 2 days, we successfully produced approximately 300 mg/L of psilocybin under simple conditions with easily sourced equipment and supplies. This finding raises the question of how this new technology should be regulated as to not facilitate clandestine biosynthesis efforts, while still enabling advancements in psilocybin synthesis technology for pharmaceutical applications. Here, we present our homebrew results, and suggestions on how to address the regulatory concerns accompanying this new technology.


Asunto(s)
Escherichia coli/metabolismo , Alucinógenos/metabolismo , Ingeniería Metabólica/métodos , Preparaciones Farmacéuticas/metabolismo , Psilocibina/biosíntesis , Escherichia coli/crecimiento & desarrollo , Fermentación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA