Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 11: 853, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582038

RESUMEN

The interaction between Aspergillus flavus and Zea mays is complex, and the identification of plant genes and pathways conferring resistance to the fungus has been challenging. Therefore, the authors undertook a systems biology approach involving dual RNA-seq to determine the simultaneous response from the host and the pathogen. What was dramatically highlighted in the analysis is the uniformity in the development patterns of gene expression of the host and the pathogen during infection. This led to the development of a "stage of infection index" that was subsequently used to categorize the samples before down-stream system biology analysis. Additionally, we were able to ascertain that key maize genes in pathways such as the jasmonate, ethylene and ROS pathways, were up-regulated in the study. The stage of infection index used for the transcriptomic analysis revealed that A. flavus produces a relatively limited number of transcripts during the early stages (0 to 12 h) of infection. At later stages, in A. flavus, transcripts and pathways involved in endosomal transport, aflatoxin production, and carbohydrate metabolism were up-regulated. Multiple WRKY genes targeting the activation of the resistance pathways (i.e., jasmonate, phenylpropanoid, and ethylene) were detected using causal inference analysis. This analysis also revealed, for the first time, the activation of Z. mays resistance genes influencing the expression of specific A. flavus genes. Our results show that A. flavus seems to be reacting to a hostile environment resulting from the activation of resistance pathways in Z. mays. This study revealed the dynamic nature of the interaction between the two organisms.

2.
Plant Dis ; 87(11): 1360-1365, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30812554

RESUMEN

The effect of the high-oleate trait of peanut on aflatoxin production was tested by comparing normal oleic lines with high-oleic backcross-derived lines. Seeds were blanched, quartered, and inoculated with Aspergillus flavus conidia, placed on moistened filter paper in petri dishes, and incubated for 8 days. In one experiment, dishes were stacked in plastic bags in a Latin square design with bags and positions in stacks as blocking variables. High-oleic lines averaged nearly twice as much aflatoxin as normal lines. Background genotype had no significant effect on aflatoxin content, and interaction between background genotype and oleate level was not detected. In a second experiment, dishes were arranged on plastic trays enclosed in plastic bags and stacked with PVC spacers between trays. Fungal growth and aflatoxin production were greater than in the first experiment. Background genotype, oleate level, and their interaction were significant. The mean of high-oleic lines was almost twice that of normal lines, but the magnitude of the difference varied with background genotype. Special care should be taken with high-oleic lines to prevent growth of Aspergillus spp. and concomitant development of aflatoxin contamination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA