Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pathogens ; 12(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986416

RESUMEN

Ascochyta blight (AB) is a destructive disease of the field pea (Pisum sativum L.) caused by necrotrophic fungal pathogens known as the AB-disease complex. To identify resistant individuals to assist AB resistance breeding, low-cost, high throughput, and reliable protocols for AB screening are needed. We tested and optimized three protocols to determine the optimum type of pathogen inoculum, the optimal development stage for host inoculation, and the timing of inoculation for detached-leaf assays. We found that different plant development stages do not affect AB infection type on peas, but the timing of inoculation affects the infection type of detached leaves due to wound-induced host defense response. After screening nine pea cultivars, we discovered that cultivar Fallon was immune to A. pisi but not to A. pinodes or the mixture of the two species. Our findings suggest that AB screening can be done with any of the three protocols. A whole-plant inoculation assay is necessary for identifying resistance to stem/node infection. Pathogen inoculation must be completed within 1.5 h post-detachment to avoid false positives of resistance for detach-leaf assays. It is essential to use a purified single-species inoculum for resistant resource screenings to identify the host resistance to each single species.

2.
Front Plant Sci ; 13: 962973, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119617

RESUMEN

Transcriptional reprogramming is an essential feature of plant immunity and is governed by transcription factors (TFs) and co-regulatory proteins associated with discrete transcriptional complexes. On the other hand, effector proteins from pathogens have been shown to hijack these vast repertoires of plant TFs. Our current knowledge of host genes' role (including TFs) involved in pathogen colonization is based on research employing model plants such as Arabidopsis and rice with minimal efforts in wheat rust interactions. In this study, we begun the research by identifying wheat genes that benefit rust pathogens during infection and editing those genes to provide wheat with passive resistance to rust. We identified the wheat MYC4 transcription factor (TF) located on chromosome 1B (TaMYC4-1B) as a rust pathogen target. The gene was upregulated only in susceptible lines in the presence of the pathogens. Down-regulation of TaMYC4-1B using barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) in the susceptible cultivar Chinese Spring enhanced its resistance to the stem rust pathogen. Knockout of the TaMYC4-1BL in Cadenza rendered new resistance to races of stem, leaf, and stripe rust pathogens. We developed new germplasm in wheat via modifications of the wheat TaMYC4-1BL transcription factor.

3.
New Phytol ; 228(3): 959-972, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32544264

RESUMEN

NPR1 has been found to be a key transcriptional regulator in some plant defence responses. There are nine NPR1 homologues (TaNPR1) in wheat, but little research has been done to understand the function of those NPR1-like genes in the wheat defence response against stem rust (Puccinia graminis f. sp. tritici) pathogens. We used bioinformatics and reverse genetics approaches to study the expression and function of each TaNPR1. We found six members of TaNPR1 located on homoeologous group 3 chromosomes (designated as TaG3NPR1) and three on homoeologous group 7 chromosomes (designated as TaG7NPR1). The group 3 NPR1 proteins regulate transcription of SA-responsive PR genes. Downregulation of all the TaNPR1 homologues via virus-induced gene co-silencing resulted in enhanced resistance to stem rust. More specifically downregulating TaG7NPR1 homeologues or Ta7ANPR1 expression resulted in stem rust resistance phenotype. By contrast, knocking down TaG3NPR1 alone did not show visible phenotypic changes in response to the rust pathogen. Knocking out Ta7ANPR1 enhanced resistance to stem rust. The Ta7ANPR1 locus is alternatively spliced under pathogen inoculated conditions. We discovered a new mode of NPR1 action in wheat at the Ta7ANPR1 locus through an NB-ARC-NPR1 fusion protein negatively regulating the defence to stem rust infection.


Asunto(s)
Basidiomycota , Triticum , Resistencia a la Enfermedad/genética , Fenotipo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA