Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 8(3): e09164, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35368550

RESUMEN

Rainwater harvesting practices are increasingly gaining recognition as viable adaptation strategies to overcome rainfall variability caused by climate change in semi-arid regions of Zimbabwe. A meta-analysis was conducted to provide a comprehensive quantitative synthesis of biophysical conditions (rainfall, soil texture, N fertility, mulch) under which basins, rippers, and tied ridges affected sorghum yields in semi-arid areas of Zimbabwe. Rainfall amount (<600 mm, 600-1000 mm), soil texture (20 % clay, 20-35 % clay), mulch (basin + mulch, ripper + mulch, tied ridges + mulch), and fertility (0-30 kg N/ha, 30-100 kg N/ha) were used to evaluate the response of sorghum grain yield to rainwater harvesting practices. Grain yield response was compared to the control (conventional practice) using the weighted mean yield difference approach. The results showed comparable sorghum grain yields in all the rainwater harvesting practices across the biophysical conditions, except under rainfall and soil textural classes. Tied ridges had a significant (p < 0.05) negative sorghum grain yield response (-0.25 t/ha) under <600 mm of rainfall, while ripper planting resulted in a substantial negative grain yield response (-0.32 t/ha) under 600-1000 mm of rainfall. Ripper planting reduced grain yield significantly (p < 0.05) (-1.06 t/ha) in soils with 20-35% clay. The results suggest that basins, rippers, and tied ridges did not improve sorghum grain yield across all agronomic conditions.

2.
Environ Monit Assess ; 193(5): 302, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33900454

RESUMEN

Understanding the occurrence, behavior, and fate of potentially toxic elements (PTEs) in the substrate-mushroom-human nexus is critical for assessing and mitigating their human health risks. In this review, we (1) summarized the nature, sources, and biogeochemical behavior of PTEs in the substrate-mushroom systems; (2) discussed the occurrence, exposure, and human health risks of PTEs in mushrooms with emphasis on African geological hotspots such as metalliferous and highly mineralized substrates; (3) developed a 10-step conceptual framework for identifying, assessing, and mitigating the human health risks of PTEs in mushrooms, and highlight future directions. High human exposure risks potentially exist in Africa due to the following: (1) widespread consumption of mushrooms from various metalliferrous and highly mineralized substrates such as serpentines and mine waste dumps, (2) inadequate and poorly enforced environmental health and food safety regulations and policies, (3) limited environmental and human health monitoring data, and (4) potential synergistic interactions among PTEs in mushrooms and human health stressors such as a high burden of human diseases and infections. Although the human health effects of individual PTEs are well known, scientific evidence linking human health risk to PTEs in mushrooms remains weak. A framework for risk assessment and mitigation, and future research directions are recommended.


Asunto(s)
Agaricales , Metales Pesados , Contaminantes del Suelo , África , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis
3.
Sci Total Environ ; 742: 140473, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623163

RESUMEN

Climate change has been posited as the biggest threat to crop productivity in agro-systems, yet its impact on the water footprints of crop production for many regions remains uncertain. This study sought to determine evidence of historical climate change (1980-2010) and its resultant impact on the blue water footprint of winter wheat production in Zimbabwe. The analysis involved assessing the impact of climate change on wheat yield and crop water requirements, the key factors determining the blue water footprint. The CROPWAT model and the global water footprint assessment (WFA) standard were used to calculate the blue water footprint. Multiple linear regression was used to correlate climate variables to wheat yield, crop water requirements and the blue water footprint. Results show a significant (p < 0.05) warming of temperatures in the country's main wheat growing areas. Crop water requirements for winter wheat decreased by 4.88%, due to positive and negative trends in humidity and wind speed respectively. Between 1980 and 2000 the coupled effects of solar radiation at anthesis and maximum temperatures in July, August and September reduced wheat yields by 6.65%. The cumulative effects of climate change on crop water requirements and wheat yields increased the blue water footprint by 4%. The results of the study suggest that climate change and agricultural management factors might be equally responsible for the increase in the blue water footprint.

4.
Springerplus ; 5: 421, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27099826

RESUMEN

An understanding of the contribution of manure applications to global atmospheric N2O loading is needed to evaluate agriculture's contribution to the global warming process. Two field experiments were carried out at Dufuya wetland (19°17'S; 29°21'E, 1260 m above sea level) to determine the effects of single and split manure applications on emissions of N2O from soil during the growing seasons of two rape and two tomato crops. Two field experiments were established. In the first experiment the manure was applied in three levels of 0, 15, and 30 Mg ha(-1) as a single application just before planting of the first tomato crop. In the second experiment the 15 and 30 Mg ha(-1) manure application rates were divided into four split applications of 3.75 and 7.5 Mg ha(-1) respectively, for each of the four cropping events. Single applications of 15 and 30 Mg ha(-1) manure once in four cropping events had higher emissions of N2O than those recorded on plots that received split applications of 3.75 and 7.5 Mg ha(-1) manure at least up to the second test crop. Thereafter N2O emissions on plots subjected to split applications of manure were higher or equal to those recorded in plots that received single basal applications of 30 Mg ha(-1) applied a week before planting the first crop. Seasonal split applications of manure to wetland vegetable crops can reduce emissions of N2O at least up to the second seasonal split application.

5.
Springerplus ; 2(1): 100, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23543041

RESUMEN

Climate change has resulted in increased vulnerability of smallholder farmers in marginal areas of Zimbabwe where there is limited capacity to adapt to changing climate. One approach that has been used to adapt to changing climate is in-field water harvesting for improved crop yields in the semi- arid regions of Zimbabwe. This review analyses the history of soil and water conservation in Zimbabwe, efforts of improving water harvesting in the post independence era, farmer driven innovations, water harvesting technologies from other regions, and future directions of water harvesting in semi arid marginal areas. From this review it was observed that the blanket recommendations that were made on the early conservation method were not suitable for marginal areas as they resulted in increased losses of the much needed water. In the late 1960 and 70s', soil and water conservation efforts was a victim of the political environment and this resulted in poor uptake. Most of the water harvesting innovations which were promoted in the 1990s' and some farmer driven innovations improved crop yields in marginal areas but were poorly taken up by farmers because they are labour intensive as the structures should be made annually. To address the challenges of labour shortages, the use of permanent in-field water harvesting technologies are an option. There is also need to identify ways for promoting water harvesting techniques that have been proven to work and to explore farmer-led knowledge sharing platforms for scaling up proven technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA