Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 194(12): 911, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36253592

RESUMEN

The arousal of environmental concerns due to spike in environmental degradation has necessitated proper waste management and disposal. Arsenic, a potentially toxic element in cassava wastewater, requires treatment prior to the wastewater disposal to minimize environmental pollution and associated health implications. The present study thus addressed the treatment of As5+ heavy metal in cassava wastewater using an efficient biosorbent from chemically pretreated unshelled Moringa oleifera seeds. The effect of various factors influencing the biosorption process for arsenate removal was studied including pH, contact time, biosorbent dosage, and biosorbent pretreatment concentration. The results of Fourier transform infrared spectroscopy clearly suggested that additional functional groups attributed to esters were formed in the pretreated biosorbent, which is responsible for improvement in biosorption. It was found that contact time, biosorbent dosage, and biosorbent pretreatment concentration had statistically significant effect (p values < 0.05) on arsenate removal. A maximum percentage removal of 99.9% was achieved in the synthetic solution at pH 4.0, contact time of 30 min, and dosage of 2 g for biosorbent pretreated with 1 M of chemical solution. Furthermore, through isotherm and kinetics studies, it was discovered that the biosorption process for untreated biosorbent is by ion exchange, while that for treated biosorbents indicated a multifarious adsorption mechanism. Moreover, the biosorption process was exothermic and spontaneous. Also, it is noted that the sorption capability of the biosorbent increases with pretreatment concentration. A statistical model has been developed with prediction R2 of 0.898, which incorporates the effect of treatment concentration on the percentage removal of As5+ from cassava wastewater.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Adsorción , Arseniatos , Monitoreo del Ambiente , Ésteres , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Aguas Residuales , Contaminantes Químicos del Agua/análisis
2.
Environ Monit Assess ; 194(2): 134, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089405

RESUMEN

Industrialisation and urbanisation contribute greatly to the deposition of toxic waste and metalloids to the environment. Therefore, the use of efficient and eco-friendly materials such as geopolymers and biopolymers is essential for the adsorption of the toxic metals. The implementation of these low-cost sorbents has fascinated a great deal of interest owing to effectiveness, ease of operation, less environmental impact, etc. In this study, biocomposites were synthesised from bio-treatment of geopolymer (kaolin and palm oil fuel ash) using an anionic biopolymer. The biocomposites were utilised as biosorbent for removal of Cu, Fe and Zn in a multi-component system, with the process parameters optimised. FTIR and SEM/EDX outcomes clearly denoted the microporous framework of geopolymer structures and the presence of bio-molecules from the biopolymer. XRD and XRF techniques on the precursors described suitability for geopolymerisation due to the rich aluminate-silicate content. Based on response surface methodology, the adsorption capacities for Cu, Fe and Zn are 35.01 mg/g, 45.175 mg/g and 44.630 mg/g at optimal conditions of pH (7.5), time (40.5 min), metal ion concentration (80 mg/l), biosorbent dosage (0.2 g) and biopolymer concentration (0.75 g in 50 ml). The multi-component system was apt with the modified competitive Langmuir isotherm which described the homogeneity of the prominent sites of the biocomposites. Based on the adsorption kinetics, Cu was only dominated by the pseudo-first-order reaction (PFOR) while Fe and Zn were influenced by both PFOR and intra-particle diffusion processes. The result obtained from the synthesised biocomposites recommends application to actual wastewater systems.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/análisis
3.
Heliyon ; 6(6): e04276, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32613130

RESUMEN

The need for developing sustainable cement-based materials is crucial for the prevention of environmental degradation and promotion of sustainable technologies. In the present study, a sustainable cement-based material was developed for sandcrete block production using coconut shell ash (CSA). The product development was executed using the Taguchi robust design approach, in which an L18 mixed level orthogonal array was adopted. The process parameters investigated were the end-web to center-web (E/C) ratio of the sandcrete block, water-cement (W/C) ratio and CSA content. The evaluated responses include the compressive strength (CS), bulk density (BD) and water absorption (WA). The result obtained showed that for the CS, all the process parameters had a statistically significant effect at 0.05 alpha level, while only the W/C ratio had a statistically significant effect on the BD and WA. The optimal settings of the process parameters for CS and BD were obtained at E/C ratio of 1:2, W/C ratio of 0.65 and CSA content of 5% while that for WA was obtained at E/C ratio of 1:1, W/C ratio of 0.65 and CSA content of 20%. The developed sandcrete blocks are suitable for load-bearing masonry units and areas with moisture exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA