Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 102(32): e34629, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37565919

RESUMEN

BACKGROUND: Compound Xiao-ai-fei honey ointment (CXHO) is an anticancer preparation with a long history in Uyghur folk medicine in China and has been used for the treatment of gastric cancer (GC) in Xinjiang, China. Nevertheless, the mechanism of its anticancer effect remains to be investigated. METHODS: Bioactive ingredients of CXHO were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. Target genes of ingredients were acquired via the PubChem and Swiss target prediction database. Gene expression profiling of GC was obtained from GSE54129 in the GEO database and analyzed using the limma package in R. The hub genes associated with CXHO in GC were validated using the TIMER2.0 database, GEPIA2 database and Auto Dock tools. The effect of CXHO on migration of GC cells was detected by Transwell chamber assay and Wound healing assay. The effect of CXHO on expression levels of MMP2/MMP9 and NF-κb, PI3K/AKT signaling pathway was detected by Western blot assay. RESULTS: Forty-five bioactive ingredients and their 819 related genes were found. A total of 462 differentially expressed genes were identified between GC patients and healthy controls. Seventeen common target genes were identified as hub genes CXHO against GC. Among them, MMP2 and MMP9 were significantly associated with tumor immune infiltrates and had good binding affinity with effective ingredients. Moreover, we validated the mRNA and protein expression levels and prognostic value of MMP2 and MMP9 by different databases. In addition, Kyoto encyclopedia of genes and genomes and gene ontology analyses showed that the 17 common target genes were mainly involved in steroid hormone biosynthesis and cancer-related pathways. Experimental results showed that CXHO inhibited migration of GC cells and down regulated the expression levels of MMP2/MMP9, NF-κb. In addition, CXHO can inhibited PI3K/AKT signaling pathway. CONCLUSION: We identified and experimental validated 2 pivotal target genes of CXHO against GC and preliminarily analyzed the potential mechanisms by which CXHO inhibits the development of GC. All these findings support CXHO as a promising drug for the treatment of GC.


Asunto(s)
Insuficiencia de la Válvula Aórtica , Miel , Neoplasias Gástricas , Humanos , FN-kappa B , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Farmacología en Red , Pomadas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
2.
Eur J Pharmacol ; 955: 175883, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37433364

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) has high morbidity and is prone to recurrence. TIMELESS (TIM), which regulates circadian rhythms in Drosophila, is highly expressed in various tumors. Its role in LUAD has gained attention, but the detailed function and mechanism have not been clarified completely at present. METHODS: Tumor samples from patients with LUAD patient data from public databases were used to confirm the relationship of TIM expression with lung cancer. LUAD cell lines were used and siRNA of TIM was adopted to knock down TIM expression in LUAD cells, and further cell proliferation, migration and colony formation were analyzed. By using Western blot and qPCR, we detected the influence of TIM on epidermal growth factor receptor (EGFR), sphingosine kinase 1 (SPHK1) and AMP-activated protein kinase (AMPK). With proteomics analysis, we comprehensively inspected the different changed proteins influenced by TIM and did global bioinformatic analysis. RESULTS: We found that TIM expression was elevated in LUAD and that this high expression was positively correlated with more advanced tumor pathological stages and shorter overall and disease-free survival. TIM knockdown inhibited EGFR activation and also AKT/mTOR phosphorylation. We also clarified that TIM regulated the activation of SPHK1 in LUAD cells. And with SPHK1 siRNA to knock down the expression level of SPHK1, we found that EGFR activation were inhibited greatly too. Quantitative proteomics techniques combined with bioinformatics analysis clarified the global molecular mechanisms regulated by TIM in LUAD. The results of proteomics suggested that mitochondrial translation elongation and termination were altered, which were closely related to the process of mitochondrial oxidative phosphorylation. We further confirmed that TIM knockdown reduced ATP content and promoted AMPK activation in LUAD cells. CONCLUSIONS: Our study revealed that siTIM could inhibit EGFR activation through activating AMPK and inhibiting SPHK1 expression, as well as influencing mitochondrial function and altering the ATP level; TIM's high expression in LUAD is an important factor and a potential key target in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/metabolismo , Adenosina Trifosfato , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , ARN Interferente Pequeño/genética
3.
J Cancer Res Clin Oncol ; 149(11): 8467-8481, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37087696

RESUMEN

PURPOSE: Esophageal squamous cell carcinoma (ESCC), is a frequent digestive tract malignant carcinoma with a high fatality rate. Daphne altaica (D. altaica), a medicinal plant that is frequently employed in Kazakh traditional medicine, and which has traditionally been used to cure cancer and respiratory conditions, but research on the mechanism is lacking. Therefore, we examined and verified the hub genes and mechanism of D. altaica treating ESCC. METHODS: Active compounds and targets of D. altaica were screened by databases such as TCMSP, and ESCC targets were screened by databases such as GeneCards and constructed the compound-target network and PPI network. Meantime, data sets between tissues and adjacent non-cancerous tissues from GEO database (GSE100942, GPL570) were analyzed to obtain DEGs using the limma package in R. Hub genes were validated using data from the Kaplan-Meier plotter database, TIMER2.0 and GEPIA2 databases. Finally, AutoDock software was used to predict the binding sites through molecular docking. RESULTS: In total, 830 compound targets were obtained from TCMSP and other databases. In addition, 17,710 disease targets were acquired based on GeneCards and other databases. In addition, we constructed the compound-target network and PPI network. Then, 127 DEGs were observed (82 up-regulated and 45 down-regulated genes). Hub genes were screened including TOP2A, NUF2, CDKN2A, BCHE, and NEK2, and had been validated with the help of several publicly available databases. Finally, molecular docking results showed more stable binding between five hub genes and active compounds. CONCLUSIONS: In the present study, five hub genes were screened and validated, and potential mechanisms of action were predicted, which could provide a theoretical understanding of the treatment of ESCC with D. altaica.


Asunto(s)
Carcinoma , Daphne , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Daphne/genética , Farmacología en Red , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Simulación del Acoplamiento Molecular , Biología Computacional , Quinasas Relacionadas con NIMA
4.
Biomed Pharmacother ; 160: 114330, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36746094

RESUMEN

We identified the effective components and the underlying mechanisms of Quince (Cydonia oblonga Mill, COM) extract against atherosclerosis. The effective components of COM extract were identified with UHPLC-Q-TOF-MS/MS. Network pharmacology was performed. A rat model of atherosclerosis induced by high-fat emulsion combined with vitamin D3 was established. The anti-atherosclerosis effect of COM extract was evaluated from various aspects such as blood lipid regulation, anti-oxidative stress, anti-inflammatory response, and vascular protection function. We identified 14 serum components of COM extract using UHPLC-Q-TOF-MS/MS. Through prediction, 573 targets were obtained, among which 224 targets were atherosclerosis specific targets. The key targets included GSK3ß, ESR1, EGFR, and HSP90AA1. The key signaling pathway was PI3K-Akt signaling pathway. Pharmacodynamics analysis showed that COM extract reduced the levels of TC, TG, and LDL-C as well as ALT and AST, while increased the level of HDL-C. Mechanistically, COM extract significantly increased serum SOD and GSH-Px activities, but decreased MDA content in atherosclerosis rats, showing antioxidant effects. Meanwhile, COM extract significantly down-regulated the levels of pro-inflammatory factors IL-1ß, IL-6, TNF-α and CRP, but up-regulated anti-inflammatory factor IL-10. Additionally, COM extract increased the levels of NO, eNOS, and 6-keto-PGF1α; whereas, decreased the levels of ET-1 and TXB2. Furthermore, COM extract significantly inhibited the mRNA and protein levels of EGFR, p-PI3K, p-AKT, GSK-3ß, Bax, and Caspase-3 as well as the Bax/Bcl-2 ratio. Conclusively, COM extract exerts hypolipidemic, anti-oxidative, anti-inflammatory, anti-thrombotic and vascular endothelium protective effects on atherosclerosis rat model, which may be related to the inhibition of EGFR/PI3K/AKT/GSK-3ß signaling pathway.


Asunto(s)
Aterosclerosis , Rosaceae , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Fosfatidilinositol 3-Quinasas/metabolismo , Espectrometría de Masas en Tándem , Proteína X Asociada a bcl-2 , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Receptores ErbB
5.
Biomed Res Int ; 2022: 4176235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669732

RESUMEN

Cydonia oblonga Mill. (COM), mature fruit of genus Rosaceae, is consumed as a kind of traditional Chinese medicinal herb. Previous studies have shown that the components in COM extract have antioxidant, anti-inflammatory, blood pressure-lowering, blood lipid-lowering, antithrombotic, and other biological activities. However, the quality markers (Q-markers) of atherosclerosis (AS) have not been elucidated. The Q-marker is based on the five core principles of traceability, transferability, specificity, measurability, validity, and prescription dispensing. In this study, the quality markers of quince were investigated by applying the ultraperformance liquid chromatography-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) method and network pharmacology method to highlight the three core elements which are, respectively, traceability transmission, measurability, and validity. At the first step, 72 components were identified by applying the ultraperformance liquid chromatography-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) method. In the next step, 46 candidate components of COM anti-AS were obtained by network pharmacology, and then, 27 active components were filtered with the molecular docking assay. Finally, the 27 active components were intersected with 10 active components obtained by mass transfer and traceable quality markers. Four anti-AS Q-markers of COM were identified, including caffeic acid, chlorogenic acid, ellagic acid, and vanillic acid, which provided a reference for the quality control of quince. The methods and strategies can also be applied to other traditional Chinese medicines and their compound preparations, providing new ideas on the quantitative evaluation and identification of quality markers.


Asunto(s)
Medicamentos Herbarios Chinos , Rosaceae , Biomarcadores , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Simulación del Acoplamiento Molecular , Farmacología en Red , Espectrometría de Masas en Tándem/métodos
6.
Medicine (Baltimore) ; 101(1): e28286, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35029877

RESUMEN

ABSTRACT: This study investigates the active components and mechanism of Shufeng Jiedu Capsules (SFJDC) against novel coronavirus through network pharmacology and molecular docking.The TCMSP, TCMID, and BATMAN-TCM databases were used to retrieve the components of SFJDC. The active components were screened by ADME (absorption, distribution, metabolism, and excretion) parameters, and identified by Pubchem, Chemical Book, and ChemDraw softwares. The molecular docking ligands were constructed. SARS Coronavirus-2 Major Protease (SARS-CoV-2-Mpro) and angiotension converting enzyme 2 (ACE2) were used as molecular docking receptors. AutoDock software was used for molecular docking. Cytoscape 3.7.1 software was used to generate an herbs-active components-targets network. Gene Ontology gene function and Kyoto Encyclopedia of Genes and Genomes signal pathway analysis were performed by DAVID data.A total of 1244 components were identified from SFJDC, and 210 active components were obtained. Among them, 97 active components were used as docking ligands to dock with SARS-CoV-2-Mpro and ACE2. There were 48 components with good binding activity to SARS-CoV-2-Mpro. Ten active components (including 7-Acetoxy-2-methylisoflavone, Kaempferol, Quercetin, Baicalein, Glabrene, Glucobrassicin, Isoglycyrol, Wogonin, Petunidin, and Luteolin) combined with SARS-CoV-2-Mpro and ACE2 simultaneously. Among them, Kaempferol, Wogonin, and Baicalein showed higher binding activity. The herbs-active components-targets network contained 7 herbs, 10 active components, and 225 targets. The 225 target targets were involved in 653 biological processes of Gene Ontology analysis and 130 signal pathways (false discovery rate ≤ 0.01) of Kyoto Encyclopedia of Genes and Genomes analysis.The active components of SFJDC (such as Kaempferol, Wogonin, and Baicalein) may combine with ACE2 and act on multiple signaling pathways and targets to exert therapeutic effect on novel coronavirus.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Simulación del Acoplamiento Molecular/métodos , Farmacología en Red , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2 , Humanos , Quempferoles , Ligandos , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA