Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 23(12): 2007-2020, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34821889

RESUMEN

Failure of sulfate-reducing bacteria (SRB)-mediated treatment of acid mine drainage (AMD) in cold regions due to inhibition of bacteria by acidic pH and low temperature can be overcome by enriching psychrophilic and acidophilic microbial consortia from local metal-rich sediments. In this study, we enriched microbial consortia from Arctic mine sediments at varying pH (3-7) and temperatures (15-37 °C) under anaerobic conditions with repeated sub-culturing in three successive stages, and analyzed the microbial community using 16S rRNA gene sequencing. The enriched SRB genera resulted in high sulfate reduction (85-88%), and significant metal removal (49-99.9%) during the initial stages (stage 1 and 2). Subsequently, sub-culturing the inoculum at pH 3-4.5 resulted in lower sulfate reduction (9-34%) due to the inhibition of SRB by accumulated acetic acid (0.3-9 mM). The microbial metabolic interactions for successful sulfate and metal removal involved initial glycerol co-fermentation to acetic acid at acidic pH (by Desulfosporosinus, Desulfotomaculum, Desulfurospora, and fermentative bacteria including Cellulomonas and Anaerovorax), followed by acetic acid oxidation to CO2 and H2 (by Desulfitobacterium) at neutral pH, and subsequent H2 utilization (by Desulfosporosinus). The results, including the structural and functional properties of enriched microbial consortia, can inform the development of effective biological treatment strategies for AMD in cold regions.


Asunto(s)
Minería , Sulfatos , Bacterias/genética , Consorcios Microbianos , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA